Narrowing the Gap between TEEs Threat Model and Deployment Strategies

Filip Rezabek!, Jonathan Passerat-Palmbach!-*, Moe Mahhouk', Frieder Erdmann', and Andrew Miller!

IFlashbots
’Department of Informatics, Technical University of Munich, Germany
3Imperial College London

Abstract—Confidential Virtual Machines (CVMs) provide
isolation guarantees for data in use, but their threat model
does not include physical level protection and side-channel
attacks. Therefore, current deployments rely on trusted cloud
providers to host the CVMs’ underlying infrastructure. How-
ever, the TEE attestation does not provide information about
the operator hosting a CVM. Without knowing whether
a Trusted Execution Environment (TEE) runs within a
provider’s infrastructure, a user cannot accurately assess
the risks of physical attacks. We observe a misalignment in
the threat model, where the workloads are protected against
other tenants but do not offer end-to-end security assur-
ances to external users without reliance on cloud providers.
The attestation should be extended to bind CVM with the
provider. A possible solution can rely on the Protected Plat-
form Identifier (PPID), a unique CPU identifier. However,
the implementation details of various TEE manufacturers,
attestation flows, and providers vary. This makes verification
of attestations, migration easiness, and building applications
without relying on a trusted party challenging, highlighting
a key limitation that must be addressed for the adoption of
CVMs. We discuss two points focusing on hardening and
extensions of TEEs’ attestation.

Index Terms—Cloud, TEE, Attestations, Threats

1. Introduction

Many applications require safeguarding sensitive data
during processing. While traditional security measures
protect data at rest and in transit, data in use remains
vulnerable to threats like unauthorized access and mali-
cious insiders [1], [2]. This risk is especially concern-
ing in cloud environments, where multiple tenants share
physical hardware on (ideally) untrusted third-party in-
frastructure, heightening data breach chances. Confidential
Computing addresses these challenges by protecting data
in use through Trusted Execution Environments (TEEs).
TEEs provide an isolated environment where sensitive
computations can be executed without interference, even
from higher-privileged software like operating systems or
hypervisors. Recently, technologies such as Intel Trust
Domain Extensions (TDX) or AMD Secure Encrypted
Virtualization (SEV)-Secure Nested Paging (SNP) run the
whole Virtual Machine (VM) in such an isolated environ-
ment. As part of their Trusted Computing Base (TCB),
they include the guest OS and guest VM'’s privileged

users, but can protect against malicious host Operating
System (OS) or hypervisor [1]]. External users can request
a hardware-signed attestation report to verify that key
components remain untampered, including code and data
inside the TEE. This combination of isolation and attesta-
tion enables secure execution of sensitive workloads, even
in untrusted environments. However, both AMD |[3]] and
Intel [1]] exclude memory integrity [4]], side channels and
sophisticated physical attacks e.g., microscope probing
or fault injection, from their threat models. While most
side channels can be mitigated at the application level,
physical attack vectors require users to trust the physical
host location of the Confidential VMs (CVMs). This
is especially needed for use cases in the Web3 space,
where TEEs could protect millions of dollars in value [S],
[6]. The robustness of CVMs depends on ensuring they
operate in a trusted environment, relying on operators
who do not tamper with nodes and enforce strong access
policies. Remote attestation verifies that communication
terminates in a TEE on an authenticated platform but does
not provide details about the operational environment.

Therefore, the attestation flow should be extended
with additional information, assuring that the environment
where the TEE platform runs is a trusted cloud data center,
thus strengthening the relation to the provider. This closes
the gap between the threat model of current TEEs and the
trust in the infrastructure owner. A recently proposed so-
lution called LooseSEAL relies on the Protected Platform
Identifier (PPID) to derive keys originating from CVMs on
the same machine [7]]. The PPID is generated based on the
Universally Unique Identifier (UUID) [_8] of Intel or the
CPU_ID [9] of AMD CPUs that run inside the cloud’s in-
frastructure. As this feature is currently not implemented,
the provider must enhance the attestation capabilities.
Besides, each provider and ideally TEE manufacturers
should implement the same flow for ease of migration,
requiring industry standardization. Another option is to
rely on a certification party that certifies the physical
location to ensure the usage of untampered hardware and
additional intrusion detection to detect physical access to
the devices, as is the case of Apple [[10]. Another, even
more demanding, approach is to extend the threat model
to include physical attacks and tampering with the chip
manufacturer’s supply chain. However, this is less likely
as it requires new TEE designs [11].

Our work aims to bring discussion points (DPs) about:
DP1 Unification/standardization of PPID & deployments.
DP2 Threat model extension by physical access.

cvm ; [cvm

Guest | [Guest
User : : User
& g 1 &

Kernel Kernel | |VTLO or
Space ! Host ! Space) | vmMPL3
Firm- R Y P
ware & [i 'l Firm- || vmPLO
Drivers c|l ware & ||

. | 1| Drivers ||
! |
i | \Paravisor,

(a) Bare/CVM Flow (b) Paravirtualization Flow

Figure 1: Simplified TEE Attestation Flow for various
Deployments. The provider controls grey dotted boxes.

2. TEEs and Attestation Flows

We introduce relevant background information sup-
porting the DPs. VM-based TEEs, such as Intel TDX [12],
[13] or AMD SEV-SNP [2]], [14], [15], enhance VM
security through encrypting and isolating guest VMs from
the hypervisor and supporting nested virtualization. Users
gain confidence in a given TEEs enclave via the request
of a remote attestation. For CVMs, Figure [I] presents
two attestation flows varying between bare metal/native
virtualization (Ta) and with an additional paravirtualized
layer (Ib) and how is UUID available to CVM. The
paravisor allows for live migration of the CVM and pro-
vides an additional layer of virtual drivers between the
guest OS and underlying VM Manager (VMM). In the
bare metal setup (Figure [Ta), the CVM runs directly on
the hypervisor, e.g., QEMU. Attestation in this scenario
involves verifying the firmware, operating system, and
TEE itself. On the other hand, in the paravirtualized
environment (Figure [Tb), the CVM additionally relies on
a paravisor, e.g., OpenHCL [16] or COCONUT [|17]]. The
paravisor implements an access mode present as a Virtual
Trust Level (VTL) for Intel TDX and Virtual Machine
Protection Level (VMPL) for AMD SEV-SNP. Of note,
VMPLO is the highest privilege level, and VTLO is the
lowest, hinting at other implementation approaches. The
attestation report should include verification of the same
components as regular deployment and the paravirtual-
ization stack. This requires the paravisor’s components
to be open-source to enable reproducible builds and thus
obtain the checksum to compare with the value in the
attestation’s fields. This is, however, not always the case,
as was the case of Microsoft Azure’s paravisor before
OpenHCL [18]]. Even when using the paravisor approach,
the quote contains the PPID constructed during Intel’s
initial platform verification. For the case of live migration,
the verifier must regularly be made aware of migration or
request attestation, as the PPID is hardware-dependent,

3. TEE Attestation Extensions & Beyond

Building on top of the background information, we
address the DPs introduced in Section [I} The DP1 focuses
on the solution’s reliance on PPID and DP2 motivates
physical attacks integration to the TEE threat model. One
way cloud providers can offer assurance that a given TEE
is indeed cloud-based could be to leverage PPID. The

PPID is a unique identifier derived uniquely for each Intel
CPUs, allowing attestation reports to be linked to a known
and verifiable machine or infrastructure for Intel TDX and
SGX. In the case of Data Center Attestation Primitives
(DCAP) attestation quotes, the Platform ID (first 16 B
of user data) is either the encrypted PPID or is derived
from it. The PPID is encrypted using Intel’s public key
of the Intel Provisioning Certification Service (PCS), with
the private key being only owned by Intel. Therefore, to
modify the PPID, the CPU manufacturer would have to be
involved, serving as a separation of interests. Overall, the
PPID is a consistent identifier that links attestation quotes
to specific physical CPUs. For the solution to work, the
cloud provider must keep a list of its publicly available
hardware identifiers so the users can then validate the
provided PPID. Such a mechanism would ensure that
workloads are executed on certified hardware and within
a secure infrastructure. We rely on cloud providers for
physical protection, so enabling the PPID does not in-
crease the attack surface, and as an operator of CVM, we
can verify the information is correct. Of note, different
CVMs on the same hardware share the same PPID. To
ensure privacy, we can use a Zero-knowledge (ZK) proof
of the attestation and the PPID details proving that our
node runs in a particular cloud, without disclosing which.
There are already ZK instantiations for DCAP [19] which
can be extended for this setting. The effectiveness of
this solution depends on how cloud providers implement
and disclose such identifiers. Implementing PPIDs should
also be unified to allow easy migration across providers
to mitigate possible friction. PPID is a robust solution
considering the current setting and not too demanding
from the cloud provider’s perspective. Nevertheless, the
trust in the cloud provider does not increase, as we rely
on the provider for physical attack protection.

However, several challenges must be addressed in de-
signing and deploying such a solution. One key difficulty
is accounting for hardware diversity, as different processor
architectures (e.g., Intel TDX, AMD SEV, ARM Con-
fidential Compute Architecture (CCA)) implement TEEs
with varying security models and attestation mechanisms.
A standardized solution must accommodate these dif-
ferences while maintaining security guarantees. The key
issue of physical and side-channel attacks persists. There-
fore, extending the threat model to include more physical,
supply-chain, and side-channels attacks will improve the
potential of TEE as a technology.

4. Next Steps for TEEs

We highlight the need to extend TEEs’ threat model to
include physical access attacks. Current VM-based TEEs
implicitly trust the cloud provider, which is misaligned
with attestation flows that do not bind the provider to
the report. Available solutions such as PPID can im-
prove TEEs adoption. Strengthening the threat model and
closing the attestation gap requires collaboration among
manufacturers, service providers, and researchers.

Acknowledgments

We thank the anonymous reviewers for their valuable
feedback and our shepherd for his valuable guidance.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Kuvaiskii et al, “Gramine-tdx: A lightweight os kernel
for confidential vms,” in Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Secu-
rity, ser. CCS ’24, Salt Lake City, UT, USA: Association for
Computing Machinery, 2024, pp. 4598-4612. [Online]. Avail-
able: https://doi.org/10.1145/3658644.3690323,

J. Ménétrey et al., An exploratory study of attestation mecha-
nisms for trusted execution environments, 2022. arXiv: 2204.
06790 [cs.CR].

M. Li et al., “A systematic look at ciphertext side channels on
amd sev-snp,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022, pp. 337-351.

D. Lee et al., “An Off-Chip attack on hardware enclaves via the
memory bus,” in 29th USENIX Security Symposium (USENIX
Security 20), USENIX Association, Aug. 2020, pp. 487-504.
[Online]. Available: https : // www . usenix . org / conference /
usenixsecurity20/presentation/lee-dayeol.

R. Cheng et al., “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019
IEEE European Symposium on Security and Privacy (EuroS&P),
2019, pp. 185-200.

K. Rabimba et al., “Lessons learned from blockchain applica-
tions of trusted execution environments and implications for
future research,” in Workshop on Hardware and Architectural
Support for Security and Privacy, ACM, Oct. 2021, pp. 1-8.
[Online]. Available: http://dx.doi.org/10.1145/3505253.3505259.
M. Mahhouk, Loose SEAL: Enabling Crash-Tolerant TDX Ap-
plications by Utilizing SGX Sealing Provider Sidecar - TEE -
Trusted Execution Environment - The Flashbots Collective, [On-
line; accessed 14. Feb. 2025], Dec. 2024. [Online]. Available:
https ://collective . flashbots . net/t/loose - seal - enabling - crash -
tolerant- tdx - applications - by - utilizing - sgx - sealing - provider -
sidecar/4243/1.

Intel, Intel tdx dcap: Quote generation library and quote ver-
ification library, [Online; accessed 14. Feb. 2025], Sep. 2024.
[Online]. Available: https://download.O1.org/intel - sgx/latest/
dcap- latest/linux/docs/Intel _TDX_DCAP_Quoting_ Library _
APILpdf.

AMD, Sev secure nested paging firmware abi specification,
[Online; accessed 14. Feb. 2025], Jan. 2025. [Online]. Available:
https://www.amd.com/content/dam/amd/en/documents/epyc-
technical-docs/specifications/56860.pdf.

Apple Inc., Hardware integrity in private cloud compute, https:
//security . apple .com/documentation/ private - cloud - compute/
hardwareintegrity, Accessed: 2025-04-01.

Q. Kilbourn, Zero Trust Execution Environments - TEE - Trusted
Execution Environment / Trustless TEEs - The Flashbots Col-
lective, [Online; accessed 15. Feb. 2025], Oct. 2024. [Online].
Available: https://collective.flashbots.net/t/zero- trust-execution-
environments/3966.

Intel. “Intel/tdx-module.” (Accessed on 05/10/2024). (2024).
M. U. Sardar, S. Musaev, and C. Fetzer, “Demystifying attes-
tation in intel trust domain extensions via formal verification,”
IEEE Access, vol. 9, pp. 83067-83 079, 2021.

AMD. “Github - amdese/amdsev: Amd secure encrypted virtu-
alization.” (Accessed on 10/15/2023). (2022).

R. Li et al., Sok: Tee-assisted confidential smart contract, 2022.
arXiv: 2203.08548 [cs.CR]. [Online]. Available: https://arxiv.
org/abs/2203.085438.

Microsoft, openvmm, [Online; accessed 14. Feb. 2025], Feb.
2025. [Online]. Available: https : // github . com / microsoft /
openvmm.

SUSE, svsm, [Online; accessed 14. Feb. 2025], Feb. 2025.
[Online]. Available: https://github.com/coconut-svsm/svsm.

C. Perezvargas, Confidential vms on azure, 2023. [Online].
Available: %5Curl % 7Bhttps ://techcommunity. microsoft.com/
blog/windowsosplatform/confidential- vms- on-azure/3836282 %
7D.

A. Network, Automata dcap attestation, Accessed: 2025-04-03,
2025. [Online]. Available: https://github.com/automata-network/
automata-dcap-attestation,

https://doi.org/10.1145/3658644.3690323
https://arxiv.org/abs/2204.06790
https://arxiv.org/abs/2204.06790
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol
http://dx.doi.org/10.1145/3505253.3505259
https://collective.flashbots.net/t/loose-seal-enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-sidecar/4243/1
https://collective.flashbots.net/t/loose-seal-enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-sidecar/4243/1
https://collective.flashbots.net/t/loose-seal-enabling-crash-tolerant-tdx-applications-by-utilizing-sgx-sealing-provider-sidecar/4243/1
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://security.apple.com/documentation/private-cloud-compute/hardwareintegrity
https://security.apple.com/documentation/private-cloud-compute/hardwareintegrity
https://security.apple.com/documentation/private-cloud-compute/hardwareintegrity
https://collective.flashbots.net/t/zero-trust-execution-environments/3966
https://collective.flashbots.net/t/zero-trust-execution-environments/3966
https://arxiv.org/abs/2203.08548
https://arxiv.org/abs/2203.08548
https://arxiv.org/abs/2203.08548
https://github.com/microsoft/openvmm
https://github.com/microsoft/openvmm
https://github.com/coconut-svsm/svsm
%5Curl%7Bhttps://techcommunity.microsoft.com/blog/windowsosplatform/confidential-vms-on-azure/3836282%7D
%5Curl%7Bhttps://techcommunity.microsoft.com/blog/windowsosplatform/confidential-vms-on-azure/3836282%7D
%5Curl%7Bhttps://techcommunity.microsoft.com/blog/windowsosplatform/confidential-vms-on-azure/3836282%7D
https://github.com/automata-network/automata-dcap-attestation
https://github.com/automata-network/automata-dcap-attestation

	Introduction
	TEEs and Attestation Flows
	TEE Attestation Extensions & Beyond
	Next Steps for TEEs

