
Why I Stopped Caring About the TCB

Adrien Ghosn
Azure Research

Microsoft
Cambridge, United Kingdom

Marios Kogias
Department of Computing
Imperial College London
London, United Kingdom

1. Introduction

Trusted Execution Environments (TEEs) have be-
come the standard for confidential and attested computing
across devices, from embedded systems to large datacenter
servers. Initially popularized by Intel SGX [5], introducing
secure enclaves to protect parts of an application, TEEs
have evolved towards full confidential virtual machines
(CVMs). Vendors now provide support for CVMs, with
Intel TDX [4], AMD SEV-SNP [7], and ARM CCA [2].

A key concern in confidential computing is the size of
the Trusted Computing Base (TCB): the hardware, code,
and tools that must be trusted to ensure confidentiality
and integrity. The TCB typically includes both the code
running inside the TEE and the tools used for compilation
and image preparation. Since TEEs by design isolate
workloads from a potentially malicious operating system
or hypervisor, threats are limited to what runs inside the
TEE. The promise of a small delimited TCB is that it
allows developers to scrutinize code and eliminate vulner-
abilities, ensure functional correctness, while also making
external audits more feasible, even for those not involved
in development.

This paper argues that prioritizing TCB size in TEEs
is a wild goose chase, conflating policies with mecha-
nisms. The primary security goal in a TEE deployment is
to prevent unauthorized data leakage by enforcing strict
information flow guarantees. TCB control is merely a
mechanism by which we hope to approximate functional
correctness and reduce leakage risks, but has proven to
be neither practical nor sufficient, especially when con-
sidering CVMs that include full commodity operating
systems or complex applications relying on extensive sets
of libraries to process data.

Instead of TCB size, we should focus on interfaces
between TEEs and untrusted code. These interfaces exist
both within a single machine (e.g., a CVM communicating
with an untrusted hypervisor) and across machines (e.g.,
TEEs communicating over a network). By analyzing infor-
mation flow at these boundaries, we can move beyond the
fixation on minimizing TCB size and build more practical,
deployable confidential infrastructure. To ensure strong
information flow guarantees and proper encapsulation of
sensitive data, we propose enforcing strict, attested, and
well-defined interfaces between TEEs and untrusted code.
Our key intuition is that hardware-enforced modularity
and compartmentalization, combined with careful inter-
face design, can uphold security regardless of module
size.

2. Position

Intel SGX enclaves promoted a small TCB, though
whether this was driven by security principles or hardware
constraints remains unclear. By isolating sensitive code
within an address space, enclaves protect against a poten-
tially malicious OS or hypervisor. Designed for critical
operations like a database’s data access unit [6], they
ensure only trusted code handles sensitive data. The small
size of the trusted code enables a full understanding and
precise reasoning about its behavior. This reasoning can
either happen through formal verification or code auditing.
Moreover, in SGX v1, the Enclave Page Cache (EPC) was
limited to 94 MB [5], causing larger enclaves to suffer
from costly paging overhead. So, minimizing the TCB was
crucial not only for security but also for performance.

Formal verification, even for small applications, has
however proven extremely challenging – if not unrealistic
– posing a barrier to wider TEE adoption. A review of
recent research shows that no work fully verifies all code
running inside a TEE, including both infrastructure and
application logic. Instead, verification is typically limited
to specific properties rather than full functional correct-
ness, leaving room for unexpected behavior and potential
data leakage.

Similarly, auditing the TCB is equally challenging.
Any TEE performing meaningful operations on sensitive
data inevitably depends on external libraries, leading to
complex and growing dependencies. These dependencies,
in turn, rely on others, rapidly expanding the effective
TCB. Even if the core codebase remains small in terms
of executable pages, fully assessing its security requires
tracking an extensive and ever-evolving web of dependen-
cies, making thorough audits impractical.

In real-world scenarios, the focus on a small TCB
has largely faded, as confidential VMs have become
the preferred approach. Unlike enclaves, which require
applications to be restructured to fit within a restricted
execution environment, confidential VMs offer a more
developer-friendly alternative by supporting unmodified
workloads. They encapsulate an entire operating system,
typically Linux, along with multiple processes, signifi-
cantly expanding the TCB. While this trade-off simplifies
development and deployment, it also increases the attack
surface, making security harder to reason about and en-
force. Simply ignoring the TCB size without introducing
new mechanisms to implement the functionality that for-
mal verification or code auditing were expected to serve,
opens the door to attacks and data leakage.



We make the observation that any attack towards a
TEE that tries to compromise integrity or confidentiality
stems from an interaction between a TEE and untrusted
code, since the TEE architecture by design protects the
rest of the TEE. There are several such interfaces that
have been or could potentially be exploited, including but
not limited to: the hypercall [8] and syscall [3] interfaces,
paravirtual devices for IO, interrupt and signal handlers,
or any adhoc application-level communication scheme
over non-confidential shared memory. Unfortunately, these
interfaces have been shown to be prown to attacks irre-
spective of the TCB size.

As an example, we take a look at the recent Ahoi
attacks to consolidate our point that low TCB does not
necessarily prevent attacks towards TEEs. The Ahoi At-
tacks [1] leverage malicious notifications in the form of
interrupts, exceptions, and signals to compromise TEEs
across different architectures. These attacks were per-
formed against CVMs running a full-fledged operating
system on SEV-SNP but also against library operating
systems and runtimes optimized for low-TCB in Intel
SGX. Rather than getting rid of vulnerable interfaces, the
need to support existing software, such as the NGINX
servers, requires even low-TCB solution to re-implement
and aggressively simplify functionality that exists in oper-
ating systems, such as interrupt handlers, without always
considering how these interfaces could be attacked.

We suggest that code size is irrelevant as long as it
avoids interacting with vulnerable interfaces that could
compromise confidentiality or integrity. Instead of fully
understanding what their code does, developers of con-
fidential applications must enforce strict guarantees on
what it cannot do – shifting the focus from minimizing
the TCB to controlling interactions and thus information
flow. For example, an ML inference engine may use vector
computation libraries, but as long as these do not (or
cannot) interact with the rest of the system, they pose
no security risk.

The key missing feature is the ability to enforce
information flow by construction rather than relying on
functional correctness. TEEs lack strict encapsulation,
leaving communication with untrusted code uncontrolled
and placing the burden on developers to manage it through
careful reasoning about all of the code they deploy. This
paper argues for decoupling the TCB from all code run-
ning inside a TEE. Rather than minimizing the TCB and
expecting developers to manage potentially exploitable
interfaces, we advocate for eliminating these interfaces
whenever possible or substitute them with attested trusted
modules.

3. Proposal

We propose structuring codebases inside TEEs as
communicating modules, each adhering to the principle
of least privilege. Module size does not impact security
as long as boundaries are enforced and information flow
is explicit and attested. We explore different ways to
implement this design, some supported by existing TEE
solutions and others paving the way for new TEE architec-
tures. We identify the essential common elements for these
approaches, providing a list of minimal requirements.

Trusted Intermediary

Module A

Trusted 
Network
Comm

Trusted 
Storage 
Access

Module B Module C Module A Module B Module C

To storage/network/hypervisor To network To storage

Figure 1. Alternative designs agnostic to TCB size

Developers should organize code into modules and ex-
plicitly define what each module cannot do. For example,
modules should not have IO device access (e.g., network,
storage), nor should they handle interrupts, exceptions, or
issue arbitrary system or hypercalls. A module’s capabili-
ties should be independent of the mechanisms that control
them. Critical functions should be offloaded to trusted
components, allowing deprivileged modules to have ar-
bitrarily large sizes without compromising security.

We identify two main designs that allow for such
architectures, as depicted in Figure 1. The one follows a
more traditional hierarchical pattern and is supported by
existing TEEs, such as AMD’s SEV-SNP. It depends on a
trusted privileged component inside the TCB that mediates
every communication between modules with the outside
world and among themselves to enforce this principle
of least privilege. The correctness of this approach still
depends on the functional correctness of a single small
privileged piece of code that needs to account for all
possibly desired interactions with the untrusted world.

The alternative design follows a decentralized ap-
proach and does not depend on a single trusted compo-
nent. Instead, it splits the functionality that interfaces with
untrusted code to different components that are trusted,
e.g. the network and storage modules. Then, it enforces
and attests certain allowed communication channels (grey
pipes) between the untrusted modules with the trusted
components based on what the untrusted modules should
or should not do. For example, a trusted component might
implement encrypted network communication. Untrusted
modules should only communicate with that trusted com-
ponent if they want to access the network.

An extreme instantiation of the second design can
take the form of an entire server using a trusted network
interface. If the only way a server can communicate with
the outside world, and thus leak sensitive information, is
through the network, by leveraging a trusted NIC that can
implement firewall and encryption mechanisms can play
the role of becoming a trusted interface.

For both designs there are two main required hard-
ware features. First, TEEs need to support some form of
hardware-enforced isolation. This can come in the form
of page tables, segmentation, or capabilities, as long as
distinct modules can be isolated. Second, there should
be at least two distinct levels of hierarchy, such that
the privilege level can either mediate the communication
between modules or strictly enforce certain information
flows among allowed modules. Finally, attestation should
make module boundaries and their communication chan-
nels explicit, allowing to reason about authorized infor-
mation flow in the entire deployment.



References

[1] The ahoi attacks. https://ahoi-attacks.github.io/.

[2] Arm confidential compute architecture. https:
//www.arm.com/architecture/security-features/
arm-confidential-compute-architecture.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,
André Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran,
Dan O’Keeffe, Mark Stillwell, David Goltzsche, David M. Eyers,
Rüdiger Kapitza, Peter R. Pietzuch, and Christof Fetzer. SCONE:
Secure Linux Containers with Intel SGX. In Proceedings of the
12th Symposium on Operating System Design and Implementation
(OSDI), pages 689–703, 2016.

[4] Intel. Architecture specification: Intel trust domain extensions
(intel tdx) module. https://software.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-module-1eas.pdf, 2023.

[5] Intel. Intel software guard extensions (intel sgx).
https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/overview.html, 2023.

[6] Christian Priebe, Kapil Vaswani, and Manuel Costa. EnclaveDB: A
Secure Database Using SGX. In IEEE Symposium on Security and
Privacy, pages 264–278, 2018.

[7] AMD Sev-Snp. Strengthening vm isolation with integrity protection
and more. White Paper, January, 53:1450–1465, 2020.

[8] Ziqiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris Hawblitzel,
and Weidong Cui. VeriSMo: A Verified Security Module for Confi-
dential VMs. In Proceedings of the 18th Symposium on Operating
System Design and Implementation (OSDI), pages 599–614, 2024.

https://ahoi-attacks.github.io/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

	Introduction
	Position
	Proposal
	References

