An Early Experience with Confidential Computing Architecture for On-Device
Model Protection

Sina Abdollahi*, Mohammad Maherif, Sandra Siby*, Marios Kogias® and Hamed Haddadi¥
*Imperial College London, s.abdollahi22 @imperial.ac.uk
Tlmperial College London, m.maheri23@imperial.ac.uk
INew York University Abu Dhabi, sandra.siby@nyu.edu
§Imperial College London, m.kogias@imperial.ac.uk
ﬂImperial College London, h.haddadi@imperial.ac.uk

Abstract—Deploying machine learning (ML) models on user
devices can improve privacy (by keeping data local) and
reduce inference latency. Trusted Execution Environments
(TEEs) are a practical solution for protecting proprietary
models, yet existing TEE solutions have architectural con-
straints that hinder on-device model deployment. Arm Con-
fidential Computing Architecture (CCA), a new Arm exten-
sion, addresses several of these limitations and shows promise
as a secure platform for on-device ML. In this paper, we
evaluate the performance—privacy trade-offs of deploying
models within CCA, highlighting its potential to enable
confidential and efficient ML applications. Our evaluations
show that CCA can achieve an overhead of, at most, 22% in
running models of different sizes and applications, including
image classification, voice recognition, and chat assistants.
This performance overhead comes with privacy benefits, for
example, our framework can successfully protect the model
against membership inference attack by 8.3% reduction in
the adversary’s success rate. To support further research and
early adoption, we make our code and methodology publicly
available.

1. Introduction

Machine-learning (ML) models are increasingly being
deployed on edge devices for various purposes such as
health monitoring, anomaly detection, face recognition,
voice assistants efc. Running models locally can provide
low-latency services to users without the need for sending
data to an external entity. As end-users typically lack
the resources required to train a model, they prefer to
utilize a pre-trained, reliable model owned by a third party
for inference and, potentially, personalization. The model
owner, having invested significant resources in training the
model, requires robust security assurances to safeguard the
model’s integrity and usage. Without these guarantees, the
owner may not be willing to deploy the model on end
devices.

Various solutions have been proposed for model pro-
tection on the edge. Cryptographic techniques such as ho-
momorphic encryption (HE) [1]-[3] or secure multiparty
communication (SMC) [4], [5] are hindered by compu-
tational and communication overheads, while the use of
trusted execution environments (TEEs) is considered a
more efficient approach. A TEE is an environment that
uses hardware-enforced mechanisms to protect memory

and execution from the operating system (OS) and its ap-
plication layer (collectively known as the Rich Execution
Environment, or REE [6]). Deploying models in a TEE
mitigates privacy-stealing attacks from REE-based adver-
saries: even if the REE is compromised, the adversary is
limited to black-box access to the model, whereas models
deployed in the REE are exposed to white-box attacks.

On the other hand, using TEEs on end devices face
security and functionality challenges. While Intel Soft-
ware Guard Extensions (SGX) has been deprecated on
end-user devices [7], Arm’s TEE—commonly known as
TrustZone—remains a widely adopted on-device solution,
implemented in various mobile platforms (e.g., Qual-
comm, Trustonic). However, as Cerdeira et al. [8] showed,
TrustZone has been the target of high-impact attacks due
to its security vulnerabilities. The high privilege level of
TrustZone, has led vendors to impose functional restric-
tions in an effort to reduce the attack surface, restrictions
such as lack of support for GPU accessing [9], and small
memory size (32MB for OP-TEE) [10].

To overcome these limitations, several solutions have
proposed partitioning models and executing only the more
sensitive components within TEEs [11], [12]. These ap-
proaches aim to provide near black-box security without
placing the entire model inside the TEE. However, Zhang
et al. [13] demonstrate that such solutions remain vulner-
able to privacy-stealing attacks and are not as secure as
commonly assumed. Even partial model weights can leak
private information about the training dataset, particularly
when combined with publicly available resources (e.g.,
similar datasets or pre-trained models). Therefore, deploy-
ing the entire model within the TEE boundary remains the
most effective strategy for protecting it against privacy
attacks.

Arm Confidential Compute Architecture (CCA) [14]
is a key component of the Armv9-A architecture that is
expected to be available on Arm devices. Arm CCA allows
the creation of special virtual machines called realm,
orthogonal to the already existing TrustZone. Realm is
de-privileged as it has virtualized access to the resources,
and it is TEE because it has protection against REE actors.
Realm creation and runtime are supported by hardware-
backed attestation services which can provide enough
evidence for a relying party (e.g., model provider) about
the trustworthiness of the realm. Compared to TrustZone,
CCA benefits from a more flexible memory allocation

TABLE 1: Memory access rules applied by granule pro-
tection check (GPC)

Security State | Normal PAS Secure PAS Realm PAS Root PAS
Normal Yes No No No
Secure Yes Yes No No
Realm Yes No Yes No
Root Yes Yes Yes Yes

scheme.! The CCA features seem promising for on-device
model deployment. Given that Arm is the dominant archi-
tecture in mobile and edge devices, we anticipate CCA’s
widespread deployment in the near future.

Motivation. Inspired by (1) the limitations of existing
TEE solutions, (2) vulnerabilities in current model par-
titioning strategies, and (3) the key features of Arm CCA,
this work introduces and evaluates a framework for de-
ploying on-device models within Arm CCA. We use the
latest tools and plugins provided by Arm to simulate and
trace Arm CCA behavior in running ML workloads. We
do not employ partitioning strategies, ensuring that the
entire model remains protected from REE actors. Our find-
ings and evaluation results can be useful to support further
research and early adoption, prior to the widespread adop-
tion of CCA on end devices.
Our contributions are as follows:

e We define a basic framework for on-device model
deployment within Arm CCA and use the lat-
est tools, software, and firmware to simulate the
framework.

e We evaluate the framework for models of differ-
ent sizes and applications, all showing acceptable
overhead (22% in the worst case).

o To showcase the security gain of the framework,
we implement a membership inference attack on
the models, showing that running models within a
realm, on average, provides an 8.3% decrease in
the success rate of membership inference attacks
against the training dataset.

e We make all our code and framework openly
available and will maintain it to benefit early-stage
adoption of CCA software products’.

2. Background

In this section, we first provide a brief overview of
Arm CCA (Section 2.1) and why it comes with overhead
(Section 2.2). We also discuss the possible choices of
evaluating CCA (Section 2.3). Finally, in Section 2.4,
we introduce a privacy-stealing attack commonly used in
security evaluations of ML systems.

2.1. Arm Confidential Compute Architecture

Arm CCA [14] is a series of hardware and software
architecture extensions that enhances Armv9-A support
for confidential computing. As shown in Figure 1, Arm

1. TrustZone enforces isolation using an Address Space Controller
(TZASC) and bus-level protection, requiring coarse-grained changes to
memory regions. In contrast, CCA uses standard page tables and the
Memory Management Unit (MMU) to enforce isolation, allowing for
fine-grained and dynamic memory management.

2. https://github.com/comet-cc/CCA-Evaluation

ELO

EL1

EL2 [RMM ‘ Hypervisor ’

EL3 [

D Realm world C] Root world D Normal world

Figure 1: Arm CCA software architecture. The hypervisor
allocates resources to realms but cannot access those
resources, due to isolation boundaries between the realm
and the normal world

Monitor }

CCA, introduces four worlds (a.k.a, execution environ-
ment): root, realm, secure, and normal world. To enforce
isolation between the worlds, CCA introduces a mecha-
nism called granule protection check (GPC). Any memory
access request succeeds only if the requester state (e.g.,
processor state) and the memory’s state both comply with
the rules defined in Table 1. Particularly, the root world
state can access the physical address space (PAS) of all
the other worlds while the realm and secure worlds state
have access to the normal PAS, but they cannot access
each other’s PAS. The normal world (NW) state cannot
access the PAS of the other worlds. Arm architecture
allows different exception levels (EL) to exist, from EL3
(the highest privilege) to ELO (the lowest privilege).

Software architecture. Figure 1 shows the software archi-
tecture of Arm CCA. The Monitor is the highest privileged
firmware in the system responsible for initially booting all
EL2 firmware/software, managing the GPC, and context
switching between different worlds. The normal world
stack consists of a hypervisor operating at NW-EL2, vir-
tual machines running at EL1 and ELO and user-space
apps running at ELO. The hypervisor is responsible for
managing all resources (e.g., CPU and memory) in the
system. The realm world stack consists of a lightweight
firmware known as Realm Management Monitor (RMM)
which mediates resource allocation of realm VMs, and
realm VMs (or simply realms) running at EL1 and ELO.
RMM enforces isolation boundaries between the hyper-
visor and the realm VMs, making realm resources (e.g.,
memory pages of the realm VM) inaccessible for the hy-
pervisor. The RMM is also able to generate an atfestation
report for the realm VM. This report keeps necessary
information about the initial content of the realm as well
as the firmware (RMM and Monitor) in the system [15],
[16].

2.2. Realm Overhead

Handling exceptions® is more complex for a realm
VM, compared to a normal world VM. For a normal world

3. In Arm architecture, exceptions are conditions or system events that
require action by privileged software [17]. Notably, interrupts triggered
by virtual devices (e.g., virtual timer) are a type of exception.

https://github.com/comet-cc/CCA-Evaluation

VM, every exception is directly received and handled by
the hypervisor, while for a realm VM, the RMM is initially
responsible for handling the exception and, if necessary,
forwarding it to the hypervisor. This complexity increases
the overhead of running a workload within realm. Two
notable sources of exceptions are the hypervisor’s timer
interrupt (timer at NW-EL2) and the realm’s timer inter-
rupts (timer at Realm-EL1), both necessary for process
scheduling within the two kernels. Each time these timers
are acknowledged by the processor, an exit from the realm
occurs, which requires handling by the hypervisor. In
Section 4.2 and Appendix B we compare the runtime
execution and I/O operation between a realm and a NW
VM.

2.3. CCA Evaluation Platforms

At the time of writing, there is no hardware compatible
with the CCA specification. However, there are software
that emulates the behavior of a CCA-compatible device.
Linaro’s QEMU [18] can be used to boot and run the
CCA software stack [19]. Fixed Virtual Platform (FVP) is
the official software released by Arm, compatible with the
CCA specification [20], [21]. FVP provides useful plugins
and tools which, combined, provide detailed information
about the behavior of CCA. Devlore [22] used QEMU, but
other works have used FVP in their evaluation as func-
tional prototype [23], [24] and also performance prototype
[25]-[27]. We utilize FVP for the evaluation. In Appendix
A, we describe how FVP can be set up with plugins and
tracing tools to measure realm’s behavior. Furthermore,
we explain the accuracy of FVP and other possible options
to evaluate CCA. It is important to note that neither FVP
nor QEMU is designed to provide performance predic-
tions, and any evaluation based on these tools should be
regarded as preliminary and approximate.

2.4. Membership Inference Attack

Membership inference attacks (MIA) are a class of
attacks in which an adversary tries to determine whether
a particular data point was a part of the training set or not.
These attacks have been widely used in the literature to
assess how much a system “leaks” information about the
training dataset [| 1]-[13]. In a typical attack setting [13],
[28], an adversary has access to a shadow dataset which
is statistically similar to the target model’s dataset. This
dataset is then used to train a shadow model and an attack
model (a binary classifier). Finally, to determine whether
a data sample is a member of the target model’s training
dataset, the sample is fed to the target model, and the
posteriors and the predicted label (transformed to a binary
indicator on whether the prediction is correct) are fed to
the attack model. Moreover, an adversary with white-box
access can enhance the attack’s accuracy by leveraging
additional model information, such as classification loss
and sample gradients (see [13], [28] for details). We use
this attack in Section 4.3 to show the privacy protection
of our framework.

3. Framework Architecture

In this section, we describe a basic framework to
deploy on-device models within CCA.

3.1. System Model

As illustrated in Figure 2, the system involves three
parties: model providers, clients, and a trusted verifier.
A model provider is an entity responsible for training
and deploying ML models on end-devices for various
tasks. These models, along with their training datasets,
are considered intellectual property and must be protected
from unauthorized access by malicious users and other
model providers. The client is an end-device, such as a
smartphone or an IoT gateway, which supports Arm CCA.
Clients host a wide variety of applications within their
REE that may require machine learning services, such as
facial recognition, voice detection, or chat assistants. The
trusted verifier is responsible for providing realm images.
A realm image includes a complete stack for a virtual
machine, encompassing an operating system, user-space
libraries, and applications necessary for running the model
within the realm.

3.2. Threat Model

We assume that model providers and clients are two
mutually distrusting entities, but they both trust the images
offered by the trusted verifier. Clients may attempt to
maliciously extract information about the model’s weights
and training data. Both the Monitor and the RMM are
considered trustworthy due to their small codebase, and
formal verification in the case of the RMM [29], [30].
However, the NW stack is untrusted as it is large and com-
plex, containing unverified user-space applications, third-
party libraries, and drivers. An adversary could exploit
these vulnerabilities to compromise the entire NW. Arm
CCA, by default, does not provide availability guarantees
regarding runtime execution and memory of realm. How-
ever, we assume that the hypervisor allocates sufficient
CPU time and memory to the realm, allowing it to ef-
fectively load the model and perform inference*. Physical
and side-channel attacks are also significant threats to the
deployment of the device model [31], [32]. However, there
are considered out of scope and the hardware is trusted.

3.3. Model Deployment Pipeline

Figure 2 shows an overview of our framework. In the
following, we provide a description of the various steps
involved in deploying the model within a realm.

Realm setup. A NW app starts the process by obtaining
a publicly-available and verified realm image from the
trusted verifier (Step 1 in Figure 2). The realm creation is
done by a collaboration among a virtual machine manager
(VMM) at NW-ELQO, the hypervisor, and the RMM (Step
2). After populating the realm memory, the hypervisor
sends the activation command to the RMM. Once the
realm is activated, it can receive CPU time, and the
hypervisor is no longer able populate new content into
the realm’s address space.

Model initialization. After realm’s kernel is booted,
the realm establishes a TLS connection with the model

4. Altering these assumptions does not impact the security of the
model, it only affects the quality of the ML service experienced by
the NW app.

Model provider Client Trusted verifier
-~ @ TLS @ @
'—a >
4_@1——’ Realm @
® % N
|| O %

Realm Image

Hypervisor

[Secure Monitor]

% Attestation Report

Model

{‘@ Updated Model

Figure 2: Overview of the steps required for running a
ML model on the client edge device. We show a simplified
view of the normal and realm worlds within the client. The
client’s steps are (1) obtaining realm image from verifier
(2) creating and activating a realm VM (3) establishing
connection with provider (4) realm attestation (5) obtain-
ing model from provider (6) announcing model readiness
to normal world (7) running inference (8) performing
model updates.

provider (Step 3). Later, the realm sends an attestation
request to the RMM and in return, the RMM sends the
attestation report to the realm, which is forwarded to the
model provider (step 4). The model provider can now use
the attestation report to verify the content of the realm
and decide whether it can trust the realm or not. On
verification, the model provider sends the model to the
realm via the TLS connection (Step 5).

Inference. The realm’s kernel includes a virtio-9p driver,
which is used to establish a file-system-based shared
memory with the NW app. After receipt of the model,
the realm announces its ability to respond to inference
queries to the NW app (Step 6). Later, the NW app sends
input data to the realm, the realm feeds it into the model,
obtains the inference, and writes the output back to the
shared file system so that the NW app can read it (Step
7).

Service maintenance. In addition to performing infer-
ence, the framework must also handle other maintenance
operations. For example, a model provider might set us-
age limits—such as a validity period or maximum in-
ferences—by embedding this functionality in the realm
image. Once these limits are reached, the realm calls the
hypervisor to terminate and release its memory. The realm
can also periodically query the model provider for updates
on the model (step 8).

Integration with mobile devices. Our framework can be
adapted for deployment on mobile devices. A potential
setup involves a hypervisor supporting CCA running at
EL2, with Android at EL1 and user applications at ELO. In
this configuration, while Android remains responsible for
managing applications running at ELO, the hypervisor can
create and manage Realm VMs, enabling secure execution
environments for sensitive models.

4. Evaluation

In this section, we evaluate and compare our frame-
work against a baseline scenario in which the model is
deployed within a NW VM. We show the computational
overhead and privacy benefit of our framework.

4.1. Experimental Setup

In this section, we describe the experimental setup
used to evaluate our framework. We compare our frame-
work with a baseline scenario, involving deploying model
within a normal world VM. We use FVP to report the
overhead of our framework in comparison to the baseline.
FVP is instruction-accurate, that is, it accurately models
the instruction-level behavior of a real processor that sup-
ports CCA [21], [33]. However, it does not effectively cap-
ture certain micro-architectural behaviors (e.g., caching
and memory accesses), which makes cycle-accurate and
timing-based measurements unreliable [33]. While we use
FVP to report the number of instructions executed by
the FVP’s processor core, these measurements should be
regarded as preliminary estimations. We do not claim that
they represent the actual performance overhead on real
CCA hardware. In Appendix A, we provide extensive
information on how to set FVP in conjunction with trac-
ing tools to accurately measure number of instructions
executed by the FVP’s core. We also use Shrinkwrap
[34], a tool that simplifies the building and execution
of firmware/software on FVP. Shrinkwrap automatically
downloads and builds necessary firmware based on the
given configuration files. More information on software
and firmware version we used for the evaluation is pro-
vided in Appendix A.

Privacy protection. As discussed in the threat model
(Section 3.2), all software in the normal world is con-
sidered untrusted. Consequently, in the baseline sce-
nario—where the model runs within a normal world
VM—the model is entirely exposed to potential adver-
saries. An adversary with this level of white-box access
can launch privacy-stealing attacks to infer information
about the model’s training dataset. In contrast, our frame-
work protects the model by executing it within realm,
effectively concealing its weights from NW adversaries.
Specifically, our framework restricts the adversary’s access
to the model to a black-box setting, where only query
access is allowed. In Section 4.3, we demonstrate the
resulting privacy advantages by evaluating both white-box
and black-box membership inference attacks.

Models. Table 2 shows an overview of the models and
settings used in the evaluation. We choose models of var-
ied sizes and types for typical on-device tasks like image
classification, speech recognition, and chat assistants. For
each model, an appropriate VM size is chosen, which is
enough for the run-time progress of inference. The size of
the virtual machine depends mainly on the use of inference
code, the size of the model, and the size of dynamic
libraries required for each model.

4.2. Inference Overhead

In order to evaluate the overhead of our framework, we
perform an evaluation with two scenarios. In the baseline
scenario, the model and the code are stored in a NW VM.
In the second scenario, the model and code are stored in
a realm VM. In both scenarios, a file system-based data
sharing is established between the VM and the NW app,
allowing the NW app to send input queries and receive
inference outputs. In order to get more insights about the

TABLE 2: Experimental settings used in the evaluation. The VM size depends on runtime memory use of inference

code, size of model, and size of dynamic libraries required

for each model.

Experimental Setting Model Model Size (MB) Library (API) Input Format VM size (MB)
® AlexNet 9 TensorFlow Lite (C++) bmp 300
@ MobileNet_v1_1.0_224 [35] 16 TensorFlow Lite (C++) .bmp 400
@ ResNet18 44 TensorFlow Lite (C++) .bmp 450
@ Inception_v3_2016_08_28 [36] 95 TensorFlow (C++) Jjpg 1750
@ VGG 261 TensorFlow (C++) .wav 3650
® GPT2 [37] 177 llama.cpp [38] (C++) text 900
@ GPT2-large [39] 898 llama.cpp [38] (C++) text 1800
TinyLlama-1.1B-Chat-v0.5 [40] 1169 llama.cpp [38] (C++) text 2000

TABLE 3: Mean (standard deviation) of instructions executed per inference service. Each experimental setting is

described in Table 2.

Setting Model Initialization (10°) Read Input (10°) Inference Computation (10°) Write Output (10°) Total (10°)

RVM NWVM Ovh | RVM NWVM Ovh R VM NW VM Ovh RVM NWVM Ovh R VM NW VM Ovh
@ 1.6 1.2 33% 0.6 0.3 100% 98.0 82.0 19% 1.1 0.5 120% 105.9 87.8 20%
@ 1.7 1.2 41% 4.7 1.1 100% 3354 278.9 20% 0.7 0.3 133% 351.8 289.3 21%
@ 2.1 1.6 31% 0.6 0.3 100% 418.2 344.0 21% 0.9 0.4 125% 442.8 363.2 20%
@ 397.9 3334 19% 2.8 1.8 55% 7663.8 6382.8 20% 4.6 3.5 31% 8717.2 7201.1 21%
@ 345.1 295.8 16% 1.8 1.1 63% 6365.7 5420.7 17% 0.15 0.09 66% 6713.2 5717.9 17%
@ 1039.1 821.9 26% 2.7 1.8 50% 12036.6 9858.7 22% 0.11 0.04 75% 131449 10726.3 22%
@ 2653.6 2158.5 22% 2.7 1.8 50% 73603.1 59870.6 22% 0.07 0.04 75% 76412.3 621564 22%
2784.9 2312.1 20% 2.6 1.8 44% 94480.0 79452.7 18% 0.07 0.04 75% 97433.3 81905.6 18%

inference service, we divide the service into four stages
and measure each one separately, (1) model initialization,
which involves loading the model into memory allocated
by the inference code, (2) getting input from the NW app
and storing it in the inference code memory (3) inference
computation, which refers to local computations within
the VM to obtain the output, and (4) writing the output
back to the NW. For each experiment in both scenarios,
we instantiate five VMs and perform five inferences per
VM, yielding a total of 25 repetitions per configuration.
We report the mean values, however standard deviations
are omitted as they are consistently below 10% in all
experiments.

Table 3 shows the results of our evaluations. As il-
lustrated, the total overhead of inference service within
the realm is moderate, ranging from 17% to 22%. Model
initialization overhead varies between 16% to 41% de-
pending on the API used for inference. The highest num-
bers are within experiments (1), (2), and @, all using the
TFlite APIL. On the other hand, overhead of read input and
write output are between 44% and 100%, and 31% and
133%, respectively, showing considerably bigger overhead
in I/O-involved operations within realm. The variation in
input read overhead is primarily due to differences in input
size across models, while the variation in output write
overhead is attributed to the number of output classes
and the format in which outputs are returned to the NW
app. As explained in Section 2.2, the main contributor
to these overheads is the increased complexity of ex-
ception handling in the realm. Although I/O operations
are relatively expensive in this setting, they represent
only a small portion of the total computation and do
not significantly affect the overall inference performance.
We also perform another experiment to see how much
each entity is responsible for the overhead of inference
computation and report the results in Appendix B. Finally,
it is important to note that these results represent only an
initial approximation, based on the number of instructions
executed by the simulator’s core. We do not report these

figures as overheads that would be replicated on actual
CCA hardware.

4.3. Membership Inference Attack

To demonstrate the security benefits of our framework,
we conduct both white-box and black-box membership
inference attacks on two models (experimental setting
@ and @ in Table 2). We adopt the MIA proposed in
[13], using the same settings and hyper-parameters (e.g.,
learning rate, number of epochs, etc). In this attack, the
adversary has access to a shadow dataset drawn from the
same distribution as the training dataset. The adversary
then uses the shadow dataset to train a binary classifier
that infers membership in the target training dataset (see
Section 2.4 for details). While the default assumption in
[13] is that the shadow dataset size matches that of the
training dataset, this assumption may not be realistic in
all practical scenarios. To account for this, we experiment
with three different ratios between the training dataset
and shadow dataset sizes. Specifically, we fix the size of
the training dataset across all scenarios and reduce the
shadow dataset size to 1/4 and 1/8 of the training dataset
size. We conduct these experiments using two models and
three different datasets. The results, presented in Table 4,
shows that the adversary’s success rate decreases by an
average of 12.4% and 4.2% for AlexNet and ResNetlS8,
respectively (8.3% reduction on average). These findings
are consistent with similar observations in [28]. Notably,
the gap between the adversary’s success rates in the two
settings grows as the number of output classes increases.
The gap is larger for CIFAR100 (100 output classes) than
for CIFAR10 (10 output classes) and CelebA (configured
for 32 output classes in our evaluation).

5. Discussion

Realm device assignment. Device assignment is one of
the planned future enhancements for CCA [41], and it

TABLE 4: Adversary’s success rate in the membership inference attack. NW: Model is deployed within NW, giving the
adversary white-box access to the model, RW: Model is deployed within realm world, giving the adversary black-box
(label-only) access to the model. R is the ratio between the size of shadow dataset and the size of training dataset

R=1 R =1/4 R =1/8

Model | Deployment | 150 —CelebA | CFI0 CFI00 CelebA | CFI0 CFI00 CelebA | otal (Average)
NW 718 84 8490 654 839 824 573 769 826

AlexNet RW 689 760 69.0 663 500 68.6 679 500 60.6
Diff 29 8.0 15.9 09 339 138 | -10.6 269 2.0 11,9 (12.9)
NW 700 919 841 699 894 86.9 664 879 855

ResNet18 RW 689 85.8 81.4 68.5 733 81.0 689 809 80.0
Diff T1 6.1 27 T4 6.1 59 25 70 55 378 (42)

could enable the deployment of new capabilities across
the ML pipeline. Securely assigning specialized hard-
ware—such as GPUs and NPUs—to realm could sig-
nificantly accelerate inference computation. More impor-
tantly, device assignment opens the possibility of protect-
ing the entire inference pipeline within the TEE boundary.
Although our current system protects the model itself from
NW adversaries, it does not protect the source of input
data. In safety-critical applications—such as health moni-
toring or autonomous driving—corrupted inputs can pose
serious risks. Thus, achieving strong guarantees requires
securing the entire inference workflow, including:(1) input
generation, (2) delivery of inputs to the model, (3) gen-
eration of outputs, and (4) consumption of outputs by the
requester.

Membership Attack on LLMs. The larger memory size
of the realm, as compared to other on-device TEE solu-
tions, allowed us to run LLMs within a realm. However,
we did not show the privacy benefit of running the LLM
within a realm. Future works could explore the trade-off
between performance and privacy when deploying LLMs
in realm compared to NW. Currently, several studies have
examined MIA in black-box settings [42], [43] while oth-
ers [44] have questioned the assumptions of previous at-
tacks, investigating whether MIAs are feasible under more
realistic conditions for LLMs. White-box MIAs for LLMs
remain an emerging area, with no proposed white-box
attacks demonstrating consistent superiority over black-
box approaches.

Limitation. For the evaluations in this paper, we have
emulated CCA using FVP, our results are only initial ap-
proximation not obtained from a real hardware. Accurate
evaluation can be done in the future when a real device
supporting Arm CCA will be available.

6. Related Works

Model partitioning on end-devices. To overcome limi-
tation of current TEEs, several works have proposed to
partition model in which more sensitive parts are running
within a TEE - these include shielding deep layers [11],
[12], shallow layers [45], intermediate layers [46], non-
linear layers [47] within a TEE. Zhang et al. [13] showed
that those partitioning solutions are vulnerable to privacy
attacks when public information like datasets and pre-
trained models engages in attacks.

TEE extensions. There are works aim to overcome the
limitations of TEE by introducing system-level tech-
niques. SANCTUARY [48] and LEAP [9], for instance,
create isolated user-space enclaves in NW on top of

TrustZone. However, in both works, the secure world
(TrustZone) is trusted, making them vulnerable to mali-
cious actors within the secure world. This is a significant
concern, as [8] demonstrated, current implementations of
TrustZone suffer from critical vulnerabilities. To address
these issues, REZONE [49] proposes a system that de-
privileges the TEE’s operating system, offering enhanced
protection against potentially malicious TEE components.
Li et al. [50] Introduces a method to allocate large mem-
ory for TrustZone apps by modifying OP-TEE. However,
the total amount of memory available to OP-TEE remains
limited to the configured size at boot time.

Systems based on CCA. As CCA is still under de-
velopment, there is limited prior work in this space.
Formal methods is introduced in [29], [30] to verify
security and functional correctness of RMM. SHELTER
[24] provides user-space isolation in the normal world
using CCA hardware primitives. ACAI [25] is a system
that allows CCA realms to securely access PCle-based
accelerators with strong isolation guarantees. DEVLORE
[22] is a system that allows realm VM to access legitimate
integrated devices (e.g., keyboard) with necessary memory
protection and interrupt isolation from an untrusted hyper-
visor. GuaranTEE [27] took initial steps in using CCA for
ML tasks. This framework provides attestable and private
machine learning on the edge using CCA and evaluated
it for running a small model within realm. In this work,
we adopt their system model and utilize tracing tools to
estimate the system’s overhead.

7. Conclusion

In this paper, we presented an in-depth evaluation of
Arm’s Confidential Computing Architecture (CCA) as a
solution to protect on-device models. We measure both
the overhead and the privacy gains of running models of
various sizes and functionalities within a realm VM. Our
results indicate that, CCA can be a viable solution for
model protection. While various challenges still remain
before CCA’s widespread deployment, we provide the first
indication of its suitability as a mechanism to provide
model protection.

Acknowledgments

We wish to acknowledge the thorough and useful
feedback from anonymous reviewers and our shepherd.
The research in this paper was supported by the UKRI
Open Plus Fellowship (EP/W005271/1 Securing the Next
Billion Consumer Devices on the Edge) and an Ama-
zon Research Awared “Auditable Model Privacy using
TEEs”.

References

(1]

(2]

(3]

(4]

[3]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

C. Orlandi, A. Piva, and M. Barni, “Oblivious neural network
computing via homomorphic encryption,” EURASIP Journal on
Information Security, vol. 2007, pp. 1-11, 2007.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy,” in International
conference on machine learning. PMLR, 2016, pp. 201-210.

T. van Elsloo, G. Patrini, and H. Ivey-Law, “SEALion: A frame-
work for neural network inference on encrypted data,” arXiv
preprint arXiv:1904.12840, 2019.

P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in 2017 IEEE symposium
on security and privacy (SP). 1EEE, 2017, pp. 19-38.

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in Proceedings of
the 2018 on Asia conference on computer and communications
security, 2018, pp. 707-721.

A. Limited, “Learn the architecture - TrustZone for AArch64,”
Accessed Feb 2025. [Online]. Available: https://developer.arm.
com/documentation/102418/latest/

“Software Guard Extensions.” [Online]. Available: https://en.
wikipedia.org/wiki/Software_Guard_Extensions

D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understand-
ing the prevailing security vulnerabilities in trustzone-assisted tee
systems,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1416-1432.

L. Sun, S. Wang, H. Wu, Y. Gong, F. Xu, Y. Liu, H. Han, and
S. Zhong, “LEAP: TrustZone Based Developer-Friendly TEE for
Intelligent Mobile Apps,” IEEE Transactions on Mobile Comput-
ing, 2022.

OP-TEE, “Q: What’s the maximum size for
heap and stack? Can it be changed” [Online].
Available: https://optee.readthedocs.io/en/latest/fag/faq.html#

g-whats-the-maximum-size-for-heap-and-stack-can-it-be-changed

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “Darknetz: towards model privacy at
the edge using trusted execution environments,” in Proceedings of
the 18th International Conference on Mobile Systems, Applications,
and Services, 2020, pp. 161-174.

F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and
N. Kourtellis, “PPFL: privacy-preserving federated learning with
trusted execution environments,” in Proceedings of the 19th an-
nual international conference on mobile systems, applications, and
services, 2021, pp. 94-108.

Z. Zhang, C. Gong, Y. Cai, Y. Yuan, B. Liu, D. Li, Y. Guo,
and X. Chen, “No Privacy Left Outside: On the (In-) Security of
TEE-Shielded DNN Partition for On-Device ML,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2024, pp. 52-52.

A. Limited, “Arm Confidential Compute Architecture,” Accessed
Feb 2025. [Online]. Available: https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture

M. Sardar, T. Fossati, and S. Frost, “SoK: Attestation in confiden-
tial computing,” ResearchGate pre-print, 2023.

TrustedFirmware, “TF-RMM,” Accessed Feb 2025. [Online].
Available: https://www.trustedfirmware.org/projects/tf-rmm

A. Limited, “Learn the architecture - AArch64 Exception Model,”
Accessed Feb 2025. [Online]. Available: https://developer.arm.
com/documentation/102412/latest/

Linaro, “gemu,” Accessed Feb 2025. [Online]. Available:
https://git.codelinaro.org/linaro/dcap/qemu
A. Bennée, “Building an RME stack for QEMU.

[Online]. Available: https://linaro.atlassian.net/wiki/spaces/QEMU/
pages/29051027459/Building+an+RME-+stack+for+ QEMU

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

[33]

(34]

(35]

[36]

T. L. Foundation, “Arm Confidential Compute Archi-
tecture open-source enablement,” Accessed Feb 2025.
[Online]. Available: https://confidentialcomputing.io/webinars/

arm-confidential-compute- architecture- open-source-enablement/

A. Limited, “Fast Models Fixed Virtual Platforms
(FVP) Reference Guide,” Accessed Feb 2025. [Online].
Available: https://developer.arm.com/Tools%20and%20Software/
Fixed%20Virtual %20Platforms

A. Bertschi, S. Sridhara, F. Groschupp, M. Kuhne, B. Schliiter,
C. Thorens, N. Dutly, S. Capkun, and S. Shinde, “Devlore: Extend-
ing Arm CCA to Integrated Devices A Journey Beyond Memory
to Interrupt Isolation,” arXiv preprint arXiv:2408.05835, 2024.

C. Wang, F. Zhang, Y. Deng, K. Leach, J. Cao, Z. Ning, S. Yan, and
Z. He, “CAGE: Complementing Arm CCA with GPU Extensions,”
in Network and Distributed System Security (NDSS) Symposium,
2024.

Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan,
and Z. He, “SHELTER: Extending Arm CCA with Isolation in
User Space,” in 32nd USENIX Security Symposium (USENIX Se-
curity’23), 2023.

S. Sridhara, A. Bertschi, B. Schliiter, M. Kuhne, F. Aliberti, and
S. Shinde, “ACAI: Extending Arm Confidential Computing Archi-
tecture Protection from CPUs to Accelerators,” in 33rd USENIX
Security Symposium (USENIX Security’24), 2024.

J. Chen, Q. Zhou, X. Yan, N. Jiang, X. Jia, and W. Zhang,
“CubeVisor: A Multi-realm Architecture Design for Running VM
with ARM CCA,” in 2024 Annual Computer Security Applications
Conference (ACSAC). 1EEE, 2024, pp. 1-13.

S. Siby, S. Abdollahi, M. Maheri, M. Kogias, and H. Haddadi,
“GuaranTEE: Towards Attestable and Private ML with CCA,’
in Proceedings of the 4th Workshop on Machine Learning and
Systems, 2024, pp. 1-9.

Y. Liu, R. Wen, X. He, A. Salem, Z. Zhang, M. Backes,
E. De Cristofaro, M. Fritz, and Y. Zhang, “ML-Doctor: Holistic risk
assessment of inference attacks against machine learning models,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022,
pp. 4525-4542.

X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell,
“Design and verification of the arm confidential compute architec-
ture,” in 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), 2022, pp. 465-484.

A. C. Fox, G. Stockwell, S. Xiong, H. Becker, D. P. Mulligan,
G. Petri, and N. Chong, “A Verification Methodology for the Arm®
Confidential Computing Architecture: From a Secure Specification
to Safe Implementations,” Proceedings of the ACM on Program-
ming Languages, vol. 7, no. OOPSLAL, pp. 376405, 2023.

Y. Yuan, Z. Liu, S. Deng, Y. Chen, S. Wang, Y. Zhang, and Z. Su,
“CipherSteal: Stealing Input Data from TEE-Shielded Neural Net-
works with Ciphertext Side Channels,” in 2025 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 2024, pp.
79-79.

——, “Hypertheft: Thieving model weights from tee-shielded neu-
ral networks via ciphertext side channels,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communica-
tions Security, 2024, pp. 4346—4360.

A. Limited, “Fast Models Reference Guide,” Accessed Feb
2025. [Online]. Available: https://developer.arm.com/Tools%
20and%20Software/Fixed%20Virtual %20Platforms

“Shrinkwrap,” Accessed Feb 2025. [Online]. Available: https:
//shrinkwrap.docs.arm.com/en/latest/overview.html

“TensorFlow Lite_Label Image,” Accessed Feb 2025.
[Online]. Available: https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/lite/examples/label_image

“TensorFlow_Label Image,” Accessed Feb 2025. [On-
line]. Available: https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/examples/label_image

“GPT2,” Accessed Feb 2025. [Online].
huggingface.co/openai-community/gpt2

Available: https:/

ggerganov, “llama.cpp,” Accessed Feb 2025. [Online]. Available:
https://github.com/ggerganov/llama.cpp

https://developer.arm.com/documentation/102418/latest/
https://developer.arm.com/documentation/102418/latest/
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://optee.readthedocs.io/en/latest/faq/faq.html#q-whats-the-maximum-size-for-heap-and-stack-can-it-be-changed
https://optee.readthedocs.io/en/latest/faq/faq.html#q-whats-the-maximum-size-for-heap-and-stack-can-it-be-changed
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.trustedfirmware.org/projects/tf-rmm
https://developer.arm.com/documentation/102412/latest/
https://developer.arm.com/documentation/102412/latest/
https://git.codelinaro.org/linaro/dcap/qemu
https://linaro.atlassian.net/wiki/spaces/QEMU/pages/29051027459/Building+an+RME+stack+for+QEMU
https://linaro.atlassian.net/wiki/spaces/QEMU/pages/29051027459/Building+an+RME+stack+for+QEMU
https://confidentialcomputing.io/webinars/arm-confidential-compute-architecture-open-source-enablement/
https://confidentialcomputing.io/webinars/arm-confidential-compute-architecture-open-source-enablement/
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms
https://shrinkwrap.docs.arm.com/en/latest/overview.html
https://shrinkwrap.docs.arm.com/en/latest/overview.html
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/label_image
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/label_image
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/label_image
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/label_image
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2
https://github.com/ggerganov/llama.cpp

[39] “GPT2-large,” Accessed Feb 2025. [Online]. Available: https:
//huggingface.co/openai-community/gpt2-large

[40] “TinyLlama/TinyLlama-1.1B-Chat-v0.5,” Accessed Feb 2025. [On-
line]. Available: https://huggingface.co/TinyLlama/TinyLlama-1.
1B-Chat-v0.5

[41] “MAD24-410 Arm Confidential Compute Architecture
open-source enablement update,” May 17, 2024.
[Online]. Available: https://resources.linaro.org/en/resource/
rEjhEezEvnNMC3LALzUTrr

[42] F. Galli, L. Melis, and T. Cucinotta, “Noisy Neighbors: Effi-
cient membership inference attacks against LLMS,” arXiv preprint
arXiv:2406.16565, 2024.

[43] R. Xie, J. Wang, R. Huang, M. Zhang, R. Ge, J. Pei, N. Z. Gong,
and B. Dhingra, “ReCaLL: Membership Inference via Relative
Conditional Log-Likelihoods,” arXiv preprint arXiv:2406.15968,
2024.

[44] M. Duan, A. Suri, N. Mireshghallah, S. Min, W. Shi, L. Zettle-
moyer, Y. Tsvetkov, Y. Choi, D. Evans, and H. Hajishirzi, “Do
membership inference attacks work on large language models?”
arXiv preprint arXiv:2402.07841, 2024.

[45] J. Hou, H. Liu, Y. Liu, Y. Wang, P-J. Wan, and X.-Y. Li,
“Model Protection: Real-time privacy-preserving inference service
for model privacy at the edge,” IEEE Transactions on Dependable
and Secure Computing, vol. 19, no. 6, pp. 4270-4284, 2021.

[46] T. Shen, J. Qi, J. Jiang, X. Wang, S. Wen, X. Chen, S. Zhao,
S. Wang, L. Chen, X. Luo et al., “SOTER: Guarding Black-box
Inference for General Neural Networks at the Edge,” in 2022
USENIX Annual Technical Conference (USENIX ATC 22), 2022,
pp. 723-738.

[47] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, L. Lu, and S. Jha, “Shad-
ownet: A secure and efficient on-device model inference system
for convolutional neural networks,” in 2023 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2023, pp. 1596-1612.

[48] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf,
“SANCTUARY: ARMing TrustZone with User-space Enclaves.”
in NDSS, 2019.

[49] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “ReZone: Dis-
arming TrustZone with TEE Privilege Reduction,” in 3/st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2261-2279.

[50] J. Li, X. Luo, H. Lei, and J. Cheng, “TEEm: Supporting Large
Memory for Trusted Applications in ARM TrustZone,” IEEE Ac-
cess, 2024.

[51] TrustedFirmware, “TF-A,” Accessed Feb 2025.
Available: https://www.trustedfirmware.org/projects/tf-a

[52] A. Limited, “linux-cca,” Accessed Feb 2025. [Online]. Available:
https://gitlab.arm.com/linux-arm/linux-cca

[53] Buildroot, “buildroot,” Accessed Feb 2025. [Online]. Available:
https://github.com/buildroot/buildroot

[54] “kvmtool-cca,” Accessed Feb 2025. [Online]. Available: https:
//gitlab.arm.com/linux-arm/kvmtool-cca

[Online].

Appendix A.
Experimental Setup

Software stack. We use the Trusted Firmware-A [51]
(v2.11), and the Trusted Firmware implementation of
RMM [16] (tf-rmm-v0.5.0) as the Monitor and the RMM
of the software stack (Figure 1), respectively. We sep-
arately build linux-cca [52] and the file system for each
experiment and pass them to Shrinkwrap. Shrinkwrap later
boots FVP with the necessary firmware and the given ker-
nel and file system. We also use Buildroot [53], to create
customized file systems for each experimental setup. In
order to create a virtual machine, we need to provision
a virtual machine manager (VMM) to the hypervisor’s
file system. Both kvmtool-cca [54] (cca/rmm-v1.0-eac5)

and Linaro’s QEMU [18] (cca/v3) have support for realm
VMs, but for each one, we need to use a compatible
branch of linux-cca (which has a similar name to the
branch of that VMM).

FVP Accuracy. FVP promises to accurately model the
instruction behavior of a real processor [21], [33]. How-
ever, some micro architectural behaviors (e.g., caching
and memory accesses) are different between FVP and an
actual device, making cyclic and timing measurements
unreliable. [33]. Therefore, we do not report timing or
cycle-accurate performance results from the simulation.
While some studies [23]-[25] have prototyped CCA on
existing Armv8-A hardware, these platforms lack essential
features—such as GPC support in system registers and
accurate cache behavior—which pose challenges to the
accuracy of such prototypes. Although our framework
is evaluated using FVP, these hardware-based prototypes
may still be valuable for others, particularly for enabling
cycle-level and timing evaluations.

Instruction tracing in FVP. FVP can be used in con-
junction with tracing tools and plugins to provide detailed
information about the behavior of CCA. Particularly, we
use GenericTrace to choose a trace source (e.g., instruc-
tions in our case) and ToggleMTIPlugin to enable/disable
tracing during runtime. We configure GenericTrace to
trace and print each instruction executed by an FVP’s
processor core, along with other metadata. The metadata
includes the security state and the exception level of the
core when running that instruction, and the total number
of instructions executed until that point in time. Using
ToggleMTIPlugin, FVP can be set to be sensitive to a
particular assembly instruction®. Whenever this instruction
is executed by the FVP’s processor core, tracing is auto-
matically started/stopped. We add this instruction at points
in the code to enable and disable GenericTrace. This is
necessary to reduce the size of the trace file and only get
what it is necessary for each experiment. Lastly, similar to
what has already been done by Sridhara et al. [25], we add
a set of assembly instructions to the code to mark specific
points (e.g., beginning and end of inference) in the final
trace file. Later, by analyzing this trace file, we can get
the result of evaluations including number of instructions
executed (for example between the beginning and end of
inference).

Runtime isolation. Since FVP simulates a multi-core
device, additional measures are necessary to ensure that
the target workload is executed exclusively on the traced
core. To achieve this, we utilize a kernel-command line
parameter called isolcpus to isolate one core from the
hypervisor’s general load balancing and scheduling algo-
rithms. This ensures that the hypervisor’s scheduler does
not assign any processes to the traced core by default.
Subsequently, during runtime, we use the taskset tool to
explicitly direct the hypervisor to use only the isolated
core for the process that oversees the virtual machine.

On-demand memory delegation. During the VM’s boot
process, the hypervisor [52] delegates only the physical
pages necessary to load the kernel and file system im-
ages. The remaining memory in the VM’s address space
is delegated on-demand, triggered by the first access to

5. We used HLT 0x1337

https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.5
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.5
https://resources.linaro.org/en/resource/rEjhEezEvnNMC3LALzUTrr
https://resources.linaro.org/en/resource/rEjhEezEvnNMC3LALzUTrr
https://www.trustedfirmware.org/projects/tf-a
https://gitlab.arm.com/linux-arm/linux-cca
https://github.com/buildroot/buildroot
https://gitlab.arm.com/linux-arm/kvmtool-cca
https://gitlab.arm.com/linux-arm/kvmtool-cca

those addresses. To decouple this one-time overhead from
the main experiment in each evaluation, we address it
by running a user-space program within the VM. This
program temporarily allocates all available memory in
the virtual machine’s user space and fills it with binary
I’s. This ensures that the hypervisor delegates the entire
memory beforehand, preventing any memory delegation
during the main experiment.

Experimental Hosts. The membership inference attack
in Section 4.3 is conducted on a system with dual Intel
Xeon Gold 6136 CPUs (48 cores, 3.7 GHz max) and 251
GiB RAM, utilizing an NVIDIA Quadro GV100 GPU
for acceleration. The environment run on Ubuntu 22.04.1
with kernel 6.5.0. Although FVP results are independent
of the host platform, we report the system specifications
for completeness. We conduct all FVP-related experiments
on a Lenovo ThinkCentre M75t Gen 2 with 16GB RAM
and an 8-core AMD Ryzen 7 PRO 3700 processor (OS:
Ubuntu 22.04.4 LTS). We set FVP to have two clusters,
each with four cores supporting Armv9.2-A and 4GB of
RAM.

Appendix B.
Inference Overhead

In order to identify the source of overhead within the
inference computation, we conduct an additional experi-
ment to quantify the engagement of firmware and software
components during inference computation. Using config-
uration @, we deploy two VMs — one within the Realm
world and the other in the NW — with both performing
the same task (a single inference). We then measured
the number of instructions executed by each software
and firmware component in the system. The results are
presented in Table 5. In both experiments, the number
of executed instructions at ELO and EL1 are relatively the
same. However, significant differences emerge at EL2 and
EL3, which are the main contributors to the overhead in
the realm. Specifically, the virtualization support for the
NW VM requires only 14.8 million instructions executed
by the hypervisor. In contrast, the Realm VM required
16.84 million instructions executed by the hypervisor, with
an additional 41.18 million instructions executed by the
RMM and 5.13 million by the Monitor. These results
suggest that the RMM is the main source of overhead,
accounting for more than twice the number of executed
instructions by the hypervisor. Worth noting that these
measurements are done during the inference computation
and there is no I/O involved.

Appendix C.
Realm Setup Overhead

In this section, we evaluate the overhead associated
with booting and terminating a realm VM in comparison
to a baseline scenario (a NW VM). As illustrated in Table
6, the overhead for booting and terminating a realm VM
is substantial, with observed increases ranging from 867%
to 21,902% for booting and from 644% to 3,521% for
termination. These elevated overheads are primarily due
to the additional RMM checks and processes required
for page delegation (during boot) and reclaming those

pages (during termination). Notably, the overhead for both
booting and termination escalates with the size of the VM,
as reflected in the experimental settings detailed in Table
2, with the exception of boot overhead between @ and
@. This results suggests that, although realm booting
and termination represent one-time costs, they become
significantly burdensome when deploying larger models,
which typically necessitate larger VM sizes.

TABLE 5: Number of instructions (in millions) executed by each software/firmware component for a single inference
in both normal and realm VMs. These results correspond to experimental setting 2 in Table 2.

Exception Realm VM Experiment NW VM Experiment
Level Realm World | Normal World | Realm World | Normal World
ELO 240.14 0.04 0 240.18
EL1 24.68 0 0 23.85
EL2 41.18 16.84 0 14.80
EL3 5.13 0

TABLE 6: Mean (standard deviation) of number of instructions executed for realm boot and termination. Each
experimental setting is described in Table 2.

Experimental Setting VM Boot (10°) VM Termination (10°)
Realm VM NW VM Overhead | Realm VM NW VM Overhead
@ 7630.1 (52.6) 788.7 (0.7) 867% 619.9 (3.3) 83.3 (0.1) 644%
@ 24960.7 (132.9) 1246.6 (0.9) 1902% 23324 (2.4) 93.1 (0.2) 2405%
@ 44499.3 (10.9) 23294 (5.2) 1832% 5156.4 (6.9) 142.4 (0.3) 3521%
@ 21101.5 (71.4) 1195.0 (0.2) 1665% 1325.3 (2.4) 87.1 (0.1) 1421%

	Introduction
	Background
	Arm Confidential Compute Architecture
	Realm Overhead
	CCA Evaluation Platforms
	Membership Inference Attack

	Framework Architecture
	System Model
	Threat Model
	Model Deployment Pipeline

	Evaluation
	Experimental Setup
	Inference Overhead
	Membership Inference Attack

	Discussion
	Related Works
	Conclusion
	References
	Appendix A: Experimental Setup
	Appendix B: Inference Overhead
	Appendix C: Realm Setup Overhead

