
Wait a Cycle: Eroding Cryptographic Trust in Low-End TEEs via
Timing Side Channels

Ruben Van Dijck
DistriNet, KU Leuven

Leuven, Belgium

Marton Bognar
DistriNet, KU Leuven

Leuven, Belgium

Jo Van Bulck
DistriNet, KU Leuven

Leuven, Belgium

Abstract—The growing interconnectivity of low-end embed-
ded devices has spurred research into lightweight trusted
execution environments (TEEs), which are designed to meet
strict power, cost, and real-time constraints. A key focus has
been on the development of dedicated frameworks and li-
braries to ensure message integrity and authenticity through
strong, sometimes formally verified cryptography. However,
existing security analyses commonly dismiss side channels,
assuming that small microcontrollers are less susceptible
to timing variations than high-end CPUs and that these
variations are easily avoided by good programming practices.

This paper systematically examines timing side channels
in open-source low-end TEEs. We identify subtle vulnerabili-
ties at different levels of the hardware-software stack: (1) the
use of non-constant-time C/C++ standard library functions
such as memcmp; (2) compiler-induced timing leaks for
comparing primitive data values; and (3) a hardware-level
timing flaw in the cryptographic core of the Sancus TEE.
We experimentally validate these timing side channels and
build practical exploits to break TEE security guarantees
and inject forged messages. Our findings demonstrate that
timing side channels pose a critical, yet often overlooked
threat to low-end TEEs, underscoring the need for future
security models to account for them.

1. Introduction

As embedded devices become increasingly prevalent
and interconnected, securing their data and operations
is more critical than ever. These devices, which play
vital roles in medical equipment, automotive systems,
and industrial control, require robust security measures
to prevent compromise. However, many 8- and 16-bit
embedded microcontrollers used in these settings lack
established security mechanisms like virtual memory or
CPU privilege levels. To address this gap, specialized
low-end trusted execution environments (TEEs) isolating
small enclave memory regions have emerged as a promis-
ing solution, gaining traction both in academic research
prototypes [1]–[7] and, to some extent, in commercial
microcontrollers [8]–[10]. Given the interconnected nature
of these devices, significant effort has been devoted to
the development of dedicated frameworks and libraries
for authentic execution, leveraging strong cryptography to
transparently ensure the integrity and authenticity of input
and output messages [11]–[16].

While authenticity guarantees for low-end enclaves
are well understood and sometimes even formally mod-

eled [2], [15], [17], any information leakage from timing
side channels is commonly considered out of scope. Un-
like high-end TEEs such as Intel SGX, which have been
extensively analyzed for software-exploitable side-channel
vulnerabilities [18], embedded TEEs run on small mi-
crocontrollers that lack advanced microarchitectural fea-
tures, making them less susceptible to timing attacks.
As Noorman et al. [11] state: “Given the kind of small
microprocessors that we target, many side-channels such
as cache timing attacks or page fault channels are not
applicable,” explicitly deferring a side-channel analysis of
their authentic-execution implementation to future work.

In this paper, we demonstrate that writing timing-
independent code for low-end enclaves is fragile and leak-
age can be introduced at different layers of the hardware-
software stack, breaking otherwise sound cryptographic
authenticity and integrity guarantees. First, the standard
libraries of C and C++, often used for the development
of enclave software, are optimized for performance rather
than security. Notably, the memcmp and std::equal
functions halt comparison as soon as they find a dif-
ference, creating a clear timing side channel. Concern-
ingly, our analysis of open-source embedded TEE re-
search prototypes reveals uses of plain memcmp and
std::equal [12], [14], and even non-constant-time cus-
tom comparison functions [2], [19].

Second, we find that embedded compilers can intro-
duce unexpected timing leaks that may not be immedi-
ately apparent even to programmers familiar with known
compiler side effects [20]. Specifically, compilers target-
ing microcontrollers often emit non-linear assembly code
when comparing two numbers using C’s equality opera-
tor (==) for commonly used uint32_t or uint64_t
values. Based on our analysis, this compiler issue affects
at least two open-source authentication libraries that rely
on primitive data type equality checks for authentication
tag comparison [13], [15].

Lastly, even hardware logic itself is not free from
timing threats, as we demonstrate by uncovering a subtle
flaw in the tag comparison for authenticated encryption
in the hardware implementation of the Sancus TEE [1].
To showcase the practical implications of the hardware
side channel, we systematically investigate its effects on
different security primitives across various versions of
Sancus and its applications, including a practical attack
that can inject rogue messages in an end-to-end distributed
authentic execution program [12].

From the broader perspective, our findings contribute
to the ongoing discourse on the resilience of TEEs and

their broader implications for cryptographic trust in em-
bedded systems. Notably, many of the systems we ana-
lyze [15], [17], [19] are shown to be vulnerable despite
having formal proofs of security. Finally, we also propose
and evaluate mitigations in software and hardware for our
uncovered vulnerabilities and discuss how to avoid similar
problems in the future.

Contributions. In summary, our main contributions are:

• We analyze how subtle timing leakage emerges
across different hardware-software layers through
insecure library functions, compiler transforma-
tions, and hardware finite-state machines.

• We demonstrate the impact of these timing dif-
ferences on the security guarantees of embedded
research TEEs and authentication libraries.

• We design and evaluate software and hardware
mitigations with minimal overhead.

• We discuss broader implications and lessons to
prevent these types of vulnerabilities in the future.

Open Science. All our code, data, and scripts are available
at https://github.com/dnet-tee/wait-a-cycle.

2. Background & Related Work

TEEs are a class of security architectures that provide
security guarantees and services for code running on them,
including but not limited to isolation, attestation, and data
sealing. Intel SGX [21] is a representative example of a
commercial TEE running on high-end CPUs. In this paper,
we focus on designs aimed at low-end computing systems,
such as resource-constrained microcontrollers. Examples
in this space include Sancus [1], providing isolation and
attestation, and VRASED [2], offering a formally verified
attestation primitive. These architectures have also been
extended over the years to offer more rich security guar-
antees [11], [12], [19], [22], [23]. In the following, we
provide more details on the Sancus TEE, the main focus
of this work. For a more detailed overview and a collection
of related publications, we refer to the Sancus website.1

2.1. Embedded Trusted Execution Environments

Responding to the specific needs of low-end Internet
of things (IoT) devices without virtual memory and priv-
ilege rings, a series of dedicated embedded TEEs [2]–
[4], [24] have been developed. These architectures aim to
(1) isolate an enclave-like memory region in the single
address space; (2) optionally perform attestation of the
protected [4], [6], [24] or the unprotected region [2], [3];
(3) offer (automated) facilities for authenticated communi-
cation [1], [11], [13]. We briefly overview these primitives
below, guided largely by the open-source Sancus architec-
ture as a representative example of a low-end TEE.

Sancus 2.0 [1] extends the original Sancus [24] archi-
tecture for networked embedded devices. It is built on top
of the openMSP430 processor [25], which is an open-
source implementation of the MSP430 microcontroller
created by Texas Instruments [26]. The MSP430 is a

1. https://distrinet.cs.kuleuven.be/software/sancus/research.php

low-end 16-bit instruction set, featuring peripherals and
a flexible clock system that link up using a von Neumann
architecture. Sancus implements minimal hardware exten-
sions for isolation, local and remote attestation, and code
confidentiality. Sancus features a hardware cryptographic
unit that provides integrity and confidentiality to protected
enclaves. The cryptographic unit, written in Verilog, is set
up as a finite state machine (FSM) and is called through
custom assembly instructions. This unit makes use of the
SpongeWrap [27] authenticated encryption scheme using
SPONGENT [28]. We focus on three primitive operations:
unwrap, verify, and enable. In combination with
a key derivation function and a key storage mechanism,
these primitives are used to provide the security services.

Isolation. Enclaves have a single data and code sec-
tion in memory. Sancus’s custom hardware circuitry for
memory access control makes enclave-private code and
data sections inaccessible from code located elsewhere in
memory. Compared to the original Sancus architecture,
Sancus 2.0 also allows for the confidential loading of
enclaves, protecting the confidentiality of the enclave code
from the untrusted loading mechanism.

Attestation. On platforms supporting multiple enclaves,
these enclaves need a way to securely link together and
verify the confidentiality and integrity of the enclave they
interact with. Potential use cases include a sensor network
where a sensor node needs to verify that the data it
receives originated from a trusted source.

Secure Communication. Secure communication is re-
quired for passing sensitive messages between an enclave
and a third party such as the remote software provider.
This functionality is supported by offering encryption
and decryption primitives in the Sancus hardware. San-
cus 1.0 supports data authentication without encryption
while Sancus 2.0 supports both. Using these primitives, a
software provider can additionally attest the authenticity
of a software module remotely, as the module’s derived
key depends on its contents.

2.2. Authenticity Guarantees

IoT applications, especially event-driven distributed
applications, need authentication guarantees to ensure the
integrity and authenticity of the data they process. To pro-
vide these guarantees, multiple libraries and frameworks
have been proposed, which are discussed next.

Authentic Execution. The authentic execution frame-
work [11], [12] can transparently provide authenticity
guarantees for distributed, event-driven applications where
messages are produced and communicated in a shared,
heterogeneous TEE infrastructure. An example usage is
secure sensor networks [29] relying on the security guar-
antees provided by authentic execution. In addition to the
implementation, the authors provide a formalization and
proof sketch of the security guarantees [17].

Controller Area Network. Several research proposals
have investigated transparently retrofitting authentication

https://github.com/dnet-tee/wait-a-cycle
https://distrinet.cs.kuleuven.be/software/sancus/research.php

of security- and safety-critical broadcast messages on low-
end Controller Area Network (CAN) buses, widely used
in automotive or industrial embedded applications.

VatiCAN [14] proposes a backward-compatible pro-
tocol for secure and efficient vehicular communication.
The authenticity of messages is ensured through transpar-
ently inserting and validating additional messages carrying
truncated 64-bit message authentication codes (MACs)
on the underlying CAN bus. LEIA [15] similarly relies
on truncated MACs to provide lightweight, backward-
compatible CAN authentication. Notably, LEIA includes
a protocol-level formalization and security proof under the
MAC unforgeability assumption.

VulCAN [13] explores the use of lightweight trusted
computing technology to further secure CAN authenti-
cation, validating MACs and terminating authenticated
connections inside enclaves. VulCAN re-implements both
the VatiCAN and LEIA protocols on the open-source
Sancus TEE architecture and critically relies on Sancus’s
hardware-level cryptographic unit to provide efficient,
real-time-compliant vehicle message authentication, attes-
tation, and enclave isolation.

2.3. Side-Channel Analysis on Low-End MCUs

Side channels are a well-known threat to most com-
puting devices. They are the result of sharing resources
between different processes or components. Low-end mi-
crocontrollers have fewer shared resources than commer-
cial CPUs, usually lacking components such as caches or
branch predictors, and are thus not susceptible to attacks
that exploit these features. However, the absence of these
shared resources renders CPU execution timings more
deterministic. This in turn makes it easier for an attacker
to exploit other side channels such as start-to-end timing.
In the case of Sancus, any feature shared between enclaves
or peripherals can be a potential side channel.

Start-to-End Timing Attacks. After the timing attack
by Kocher [30] on cryptographic protocols, many more
similar side channels have been discovered. In the case of
timing attacks, the variable time needed for executing in-
structions based on the (secret) input leads to leakage [31].
Once the attacker observes the timing information, they
can deduce (part of) the secret input.

Goodspeed [32] reported an example of a start-to-end
timing attack on the MSP430. The serial bootstrap loader
(BSL) is vulnerable due to unbalanced branches in its
password comparison routine. More specifically, incorrect
bytes take two clock cycles longer to process than correct
ones. By observing the start-to-end timing of the BSL,
an attacker can deduce the correct password byte-by-
byte. This reduces the search space and required time
significantly. After breaking the BSL password, attackers
can read out or flash malicious firmware on the device.

Nemesis. The first microarchitectural side-channel attack
on low-end Sancus microcontrollers was Nemesis [33], a
timing attack that uses interrupt logic to leak information.
Sancus, like most processors, executes instructions over
multiple cycles. As interrupts are only triggered after
instruction retirement, an attacker can measure the time
it takes for the current instruction to finish executing

TABLE 1. TIMING LEAKAGE IN THE HARDWARE-SOFTWARE STACK.

System Library == operator Hardware

VRASED+, RATA, ACFA, TRAIN é
VatiCAN é
LEIA é
VulCAN é
Sancus, Authentic Execution é é

by measuring interrupt latency. Non-linear programs and
microarchitecturally unbalanced branches are vulnerable
to this attack.

Direct Memory Access. Another microarchitectural side-
channel attack on low-end microcontrollers uses direct
memory access (DMA) and the shared memory buses to
leak information [34], [35]. While DMA accesses cannot
directly access the code or data in enclaves, their timing
can leak information about the enclave’s memory activity.
A DMA-capable peripheral can probe the memory bus and
detect contention with the enclave by measuring the la-
tency of the DMA requests. Similar to the Nemesis attack,
non-linear programs and microarchitecturally unbalanced
branches are vulnerable to this attack.

Existing Mitigations. Most existing mitigations against
these timing attacks use software modifications. Winderix
et al. [36] and Bognar et al. [37] proposed mitigations
against the Nemesis and the DMA contention attacks,
respectively. These mitigations use compiler-inserted in-
structions to balance vulnerable branches to exhibit the
same leakage, regardless of their outcome. Given that
these mitigations balance branches, they also mitigate
against simpler start-to-end timing attacks that exploit
unbalanced secret-dependent branches such as the BSL
attack [32]. An orthogonal proposal masks the Nemesis
interrupt-latency leakage directly in hardware [38].

3. Leakage in the Hardware-Software Stack

In the following, we demonstrate that even on low-end
microcontrollers, subtle deviations in enclave execution
time can be exploited to break otherwise sound cryp-
tographic authenticity and integrity guarantees. To this
end, we systematically investigate the timing leakage in
different layers of the hardware-software stack. Table 1
summarizes the systems we analyze and the non-constant-
time behavior we observed in the hardware-software stack.

Threat Model. The only capability we require for our
attacks is running untrusted code on the device, which is
in the threat model of all systems we analyze. In addition,
(open)MSP430 has a software-accessible cycle-accurate
timer, suitable for measuring precise timing differences.

3.1. Standard Library Functions

We start by analyzing the security of the C and C++
standard libraries provided to developers to improve the
ease of development. These libraries are understandably
optimized for performance rather than security. Low-end
embedded devices, often optimized for energy efficiency,
rely on these libraries and their performant functions.

1 int secure_memcmp(const uint8_t *s1, const
uint8_t *s2, int size) {

2 int res = 0; int first = 1;
3 for (int i = 0; i < size; i++) {
4 if (first == 1 && s1[i] > s2[i]) {
5 res = 1; first = 0;
6 } else if (first == 1 && s1[i] < s2[i]) {
7 res = -1; first = 0;
8 }
9 }

10 return res;
11 }

Listing 1. Non-constant-time secure_memcmp function used in
VRASED+ [2] and derived architectures [19], [22], [23].

Standard library functions like memcmp or std::equal
halt the memory comparison upon finding a difference for
performance reasons, creating a clear timing side channel.

Plain memcmp. Our analysis of open-source TEE research
prototypes reveals widespread use of plain memcmp or
std::equal calls. First, the aforementioned authen-
tic execution framework [12] uses a C++ library [39]
that implements the SpongeWrap authenticated encryption
with associated data primitive and uses std::equal
for the comparison of tags. Due to this non-constant-time
comparison, attackers can linearly brute-force the tag one
byte at a time. While the Sancus implementation uses
direct hardware support for SpongeWrap (cf. Section 3.3),
the non-constant-time C++ library is used in the Intel
SGX and Arm TrustZone implementations. Crucially, this
would allow reliable exploitation using the SGX-Step [40]
single-stepping framework to deterministically count the
number of instructions and, hence, the number of correct
tag bytes when comparing computed and expected tags.
Finally, we investigated the open-source VatiCAN [14] au-
tomotive authentication library, which similarly uses the C
function memcmp to compare the tags in its authentication
protocol, making it vulnerable to timing attacks.

Secure memcmp. Prior work [34] demonstrated a start-
to-end timing leak in the authentication protocol of
VRASED+ [2], which used a plain, non-constant-time
memcmp function. In response, the VRASED+ au-
thentication code [41] was changed to use a custom
secure_memcmp function that does not terminate early
on a byte mismatch, as shown in Listing 1. Crucially,
we found that the new implementation is still vulnerable
to a timing attack, highlighting the non-triviality of writ-
ing constant-time code. The custom secure_memcmp
implementation even allows attackers to improve linear
brute-force attacks using binary search, as detailed in
Appendix A (which also includes the compiled assembly
code for completeness). Currently, this secure_memcmp
function is used in the provably secure RATA [19],
ACFA [22] and TRAIN [23] hardware-software co-
designs, where it may introduce application-specific se-
curity or availability concerns.

3.2. Compiler Analysis

Our second finding is that compilers for low-end mi-
crocontrollers can introduce timing leakage when compar-
ing values of primitive C data types. Specifically, we found

1 cmp.w 6(r1), r12
2 jne .L1
3 cmp.w r9, r13
4 jne .L1

Listing 2. Primitive data-type comparison of two 64-bit integers compiled
using MSP430 gcc v14.2.0.

1 xor.w 10(r4), r15
2 xor.w 6(r4), r13
3 bis.w r15, r13
4 xor.w 8(r4), r14
5 xor.w 4(r4), r12
6 bis.w r14, r12
7 bis.w r13, r12
8 cmp.w #0, r12
9 jne .LBB0_2

Listing 3. Primitive data-type comparison of two 64-bit integers compiled
using sancus-cc based on LLVM/clang v4.0.1.

that for equality and inequality comparisons (==, !=) on
uint32_t or uint64_t integer values that exceed the
word size of the target system, the compiler may introduce
repeated assembly comparisons on 8- or 16-bit word-sized
chucks of the data with early exit jumps.

For instance, consider the code (uint64_t) a ==
(uint64_t) b, which performs a comparison between
two 64-bit integers. When compiled using a modern
MSP430 gcc v14.2.0 with space optimizations (-Os),
the code will be compiled into non-constant-time assem-
bly code, shown in Listing 2. Other recent versions and
optimization levels of the compiler create similar results.
Notably, the sancus-cc compiler bundled with Sancus,
based on an outdated version of LLVM/clang v4.0.1,
does not exhibit a timing leakage. As shown in Listing 3,
this code employs a linear chain of repeated xor instruc-
tions to perform the comparison, always checking the full
64-bit integer. Appendix B includes compiled assembly
code for different compiler versions and optimization lev-
els for popular target architectures, summarized in Table 2.
Notably, these results show that even on 32-bit platforms
such leakage can occur when comparing 64-bit numbers.

We found that both LEIA [15] and VulCAN [13] use
uint64_t primitive data types to compare the computed,
secret-dependent and the received, attacker-provided MAC
values, using simple C equality (==) or inequality (!=)
operators. This makes enclaves using these automotive
authentication libraries vulnerable to the timing attacks
described above, depending on the exact compiler version
and optimization levels used.

3.3. Hardware Timing Vulnerability

Finally, even at the level of the hardware itself, timing
vulnerabilities can be found. In the following, we demon-
strate the existence of a subtle early-out comparison flaw
in the FSM hardware logic implementing authenticated
encryption for Sancus. This analysis is followed by a
systematic investigation of the impact on different crypto-
graphic primitives in different versions of Sancus and an
end-to-end attack on the authentic execution framework.

Timing Leak. The cryptographic unit of Sancus is built
using an FSM in hardware. This FSM controls the cryp-
tographic unit while the SpongeWrap [27] construction is

TABLE 2. NON-CONSTANT-TIME DATA TYPE COMPARISONS.

Compiler Word size uint16 t uint32 t uint64 t

MSP430 gcc v14.2.0 16 é é
sancus-cc (LLVM v4.0.1) 16
RISC-V gcc v14.2.0 32 é
MIPS (el) gcc v14.2.0 32 é
x86 MSVC v19 32 é

VERIFY_TAG

VERIFY_TAG_WAIT

FAIL

SUCCES

INCORRECT WORD

FINISHED

BYTES LEFT

CO
RRECT

W
O

RD

BUSY
CALCULATING
NEXT WORD

Figure 1. Part of the cryptographic FSM responsible for comparing tags.
The first state is VERIFY_TAG on the top left.

used for the actual cryptographic operations. Moreover,
the FSM checks the correctness of authentication tags
(either MACs or hashes) provided by the programmer
against the tags it computes. These checks are conducted
one 16-bit word at a time, as shown in Figure 1, where
comparison is aborted on the first word mismatch.

This non-constant-time FSM for tag verification is
embedded in the hardware logic for several cryptographic
primitives in Sancus. However, not every timing difference
can lead to a security violation. Table 3 summarizes the
impact of the timing side channel on the confidentiality,
integrity, and availability guarantees provided by different
Sancus versions. Most importantly, Sancus 2.0 [11] added
support for authenticated encryption with associated data.
Thus, in this version, the timing variations in the unwrap
authenticated decryption primitive may allow attackers to
perform a linear brute-force attack on the expected MACs
for attacker-chosen ciphertexts and associated plaintext
data. Notably, we found that the behavior of the verify
primitive for local attestation was changed from using
MACs in Sancus 1.0 [24] to hashes in Sancus 2.0 [11],
making the observed timing variations for verify in
Sancus 2.0 secret-independent. However, since Sancus 2.0
supports the confidential loading of encrypted enclaves,
the enable instruction in this version is susceptible to
timing leakage. This vulnerability enables attackers to
brute-force the MAC values for encrypted Sancus 2.0
enclaves, allowing them to bypass availability and forcibly
load enclaves that would decrypt to garbled plaintext.

Proof-of-Concept. We developed an elementary Sancus
enclave that takes an encrypted message and a corre-
sponding tag as inputs and uses the unwrap primitive
to authenticate the incoming message and decrypt its
associated data. By accurately timing the execution of the
vulnerable enclave, the attacker can deduce the number
of correct words in the tag. The attacker can, therefore,
guess the correct tag word by word, reducing the search
space from an exponential to a linear effort. Brute-forcing
the correct tag allows the attacker to pass off malicious

TABLE 3. SANCUS VERSIONS AFFECTED BY THE TAG COMPARISON
LEAK (C=CONFIDENTIALITY; I=INTEGRITY; A=AVAILABILITY).

Primitive C I A

sancus_unwrap – 2.0 –
sancus_verify – 1.0 1.0
sancus_enable – 2.0 2.0

messages to the enclave as authentic, but not to learn
the contents of the decrypted data. Depending on the
application, such as when the decrypted data represents
a boolean activation flag, injecting such garbled messages
may be sufficient to carry out a practical attack.

End-to-End Attack. The authentic execution frame-
work [11], [12], discussed in Section 2.2, has an entry
point for handling input data. The entry point is called
HandleInput (see Listing 8 in Appendix C) and is
responsible for decrypting the payload and calling a cor-
responding callback function to process it. In the frame-
work’s Sancus implementation, the cryptographic unit and
its vulnerable unwrap primitive are used to decrypt the
payload and check the tag.

An attacker only needs to know the public connection
identifier and have untrusted code running on the same
node, which is within the attacker model of the frame-
work. In our attack, an attacker can construct a payload
consisting of a random ciphertext and a tag. As before,
the attacker can measure the time it takes to execute the
HandleInput function. Based on the timing, the correct
tag can be deduced, which allows the attacker to pass
the message off as authentic, breaking the main security
guarantee of the framework. We successfully reproduced
this attack using the open-source artifacts of the authentic
execution framework for Sancus.

4. Discussion and Mitigations

Timing attacks have been known for many years. Our
findings provide further evidence that low-end TEEs and
systems building on them are just as impacted by these
vulnerabilities as high-end systems, despite the simpler
hardware implementations. We argue further that the ob-
servations made in this paper can likely be extended to
other low-end TEEs, since time is a shared resource on
almost any programmable device.

To understand and mitigate the full impact of the side
channels, developers or tools need to be aware of the
timing behavior of the whole hardware-software stack.
First, care should be taken when using standard libraries
since they are optimized for performance and not secu-
rity. Our examples show that even hand-written library
functions such as the investigated secure_memcmp can
be vulnerable to subtle timing leaks. Furthermore, we
showed that compilers, especially when targeting lower-
end platforms, can introduce unexpected timing leaks even
when comparing primitive data types. Finally, even the
hardware can hide timing leakage that is not detectable
just by examining the program code. While in this paper
we demonstrated vulnerabilities in these different layers in
low-end trusted execution settings, future research could
extend the scope to high-end TEEs.

4.1. Using Formal Methods

Formal methods are a powerful tool to increase confi-
dence in the security of a system. However, they tend to
defer side-channel-aware modeling for future work. Based
on our results, we argue that this side-channel analysis
should be conducted either as part of the formalization or
as thorough inductive testing [34].

Notably, several of the vulnerabilities we demonstrated
impact systems with a formal security model. The timing-
dependent secure_memcmp function is used in formally
verified attestation architectures [2], [19], [22], [23]. Fur-
thermore, the high-level formal model for the LEIA [15]
authentication library could not anticipate the concealed
low-level timing effect introduced by the compiler. Fi-
nally, the hardware-level timing variations we exploit to
bypass authenticity guarantees are completely invisible
in the application code, the authentic execution compiler
framework, and its high-level formal definition [17].

4.2. Software Mitigations

Mitigating the timing leakage introduced by the com-
piler or insecure libraries should be fixed in software.
In all cases, comparing secret-dependent values should
always happen in a constant-time fashion, for example
using XOR instructions [42], as done by the sancus-cc
compiler. To validate whether the compiler introduced any
timing leakage, binary analysis tools can be used [43].

Mitigating the timing-dependent cryptographic unit in
Sancus from software is more difficult, but might be
necessary on legacy hardware. A possible solution is to
time the execution of the cryptographic unit from the
enclave and add a delay if the execution time is too
short. This way, the execution time of an entry point will
not differ based on the cryptographic operation. How-
ever, this mitigation needs to ensure that this software-
induced padding cannot be detected and differentiated
from hardware-induced delays by other means, such as
interrupts [33] or the enclave’s memory activity [34].

4.3. Hardware Mitigation

To patch the timing channel in the cryptographic hard-
ware unit, we implement and evaluate two, slightly dif-
ferent, hardware mitigations. To eliminate the leakage, the
part of the state machine responsible for the verification
needs to be altered in such a way that it always takes
the same amount of time to verify the tag. There are two
possible ways to achieve this: adding an extra register to
keep track of the result of the comparison or adding extra
states. A graphical representation of the modified FSMs
for the two mitigations is shown in Appendix D.

Extra Register. By adding a register to the cryptographic
unit, the state machine can keep track of whether an
incorrect word was found during the iterative checks. This
way, the state machine can continue with the verification
even if an incorrect word is found. Finally, when all
words of the tag have been checked, the state machine
can indicate whether the verification was successful or
not based on this stored register.

TABLE 4. COSTS OF THE PROPOSED HARDWARE MITIGATIONS IN
LOOKUP TABLES (LUTS) AND FLIP-FLOPS (FFS), FOR THE ENTIRE

SANCUS CORE AND THE CRYPTOGRAPHIC UNIT INDIVIDUALLY.

Total Crypto unit

Architecture LUT FF LUT FF

Original 5,427 2,240 1,436 592
Extra register 5,407 2,241 1,414 593
Extra states 5,457 2,240 1,482 592

Extra States. Another way to mitigate the attack is by
adding extra states to the state machine. These dummy
states delay the final result if incorrect words are found.
They simulate the normal working of the state machine,
leading to a constant execution time, but eventually in-
dicate failure. Extra changes are needed in the original
cryptographic unit for this solution, such as increasing the
size of the buffer that keeps track of the current state.

Comparison. Both mitigations have advantages and dis-
advantages. To better evaluate the effects of the changes,
we compared the hardware cost of the original imple-
mentation and the two mitigations. We obtained these
measurements by using Vivado 2024.2 to synthesize the
designs for the Kintex UltraScale+ FPGA. The results are
shown in Table 4. All architectures are evaluated based on
the total number of lookup tables (LUTs) and flip-flops
(FFs) utilized in the complete implementation, including
the cryptographic unit, as well as for the cryptographic
unit alone. Comparing the total implementation is nec-
essary, as changes in the cryptographic unit might have
effects on other parts of the design.

Based on these results, we favor the solution of adding
an extra register. It requires fewer LUTs compared to
the mitigation with extra states, and even fewer than
the original implementation, likely thanks to the reduced
complexity of the state machine. In terms of FFs, the extra
register mitigation requires one more FF compared to the
original implementation and the extra states architecture;
this is the FF used to store the result of the comparison.

5. Conclusion

This paper highlighted the importance of consider-
ing side-channel attacks in every layer of the hardware-
software stack. Our comprehensive side-channel analysis
uncovered the use of non-constant-time functions from
the C and C++ standard libraries and even non-constant-
time custom comparison functions in multiple embedded
TEE research prototypes. Moreover, we demonstrated that
compilers for low-end microcontrollers can introduce tim-
ing vulnerabilities in the assembly code, even for equality
checks on primitive data types. We further showed that
even the hardware can harbor subtle timing vulnerabil-
ities, as evidenced by a flaw in the cryptographic unit
of the Sancus TEE. Our proposed hardware and software
mitigations aim to address these vulnerabilities with min-
imal performance impact. Finally, we argue that formal
methods should be combined with thorough side-channel
analysis to provide strong security guarantees.

Acknowledgment

This research was partially funded by the ORSHIN
project (Horizon Europe grant agreement #101070008),
the Research Fund KU Leuven, and the Cybersecurity
Research Program Flanders.

References

[1] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. C.
Freiling, “Sancus 2.0: A low-cost security architecture for iot
devices,” ACM Transactions on Privacy and Security, vol. 20, no. 3,
2017.

[2] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner,
and G. Tsudik, “VRASED: A verified hardware/software co-design
for remote attestation,” in USENIX Security Symposium, 2019.

[3] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART:
Secure and minimal architecture for (establishing dynamic) root
of trust,” in Network and Distributed System Security Symposium
(NDSS), 2012.

[4] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan,
“Trustlite: a security architecture for tiny embedded devices,” in
EuroSys, 2014.

[5] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. C. Freiling, and
I. Verbauwhede, “Hardware-based trusted computing architectures
for isolation and attestation,” IEEE Transactions on Computers,
vol. 67, no. 3, 2018.

[6] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, “TyTAN: Tiny trust anchor for tiny devices,” in Design
Automation Conference (DAC), 2015.

[7] R. de Clercq, F. Piessens, D. Schellekens, and I. Verbauwhede,
“Secure interrupts on low-end microcontrollers,” in IEEE Interna-
tional Conference on Application-Specific Systems, Architectures
and Processors (ASAP), 2014.

[8] M. Bognar, C. Magnus, F. Piessens, and J. Van Bulck, “Intellectual
property exposure: Subverting and securing intellectual property
encapsulation in Texas Instruments microcontrollers,” in USENIX
Security Symposium, 2024.

[9] Texas Instruments, “MSP code protection features,” https://www.
ti.com/lit/an/slaa685/slaa685.pdf, 2015.

[10] Microchip, “Codeguard security: Protecting intellectual property in
collaborative system designs,” http://ww1.microchip.com/downlo
ads/en/DeviceDoc/70179a.pdf, 2006.

[11] J. Noorman, J. T. Mühlberg, and F. Piessens, “Authentic execution
of distributed event-driven applications with a small TCB,” in
Security and Trust Management - International Workshop (STM),
2017, pp. 55–71.

[12] G. Scopelliti, S. Pouyanrad, J. Noorman, F. Alder, C. Baumann,
F. Piessens, and J. T. Mühlberg, “End-to-end security for distributed
event-driven enclave applications on heterogeneous tees,” ACM
Trans. Priv. Secur., vol. 26, no. 3, 2023.

[13] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN: Efficient
component authentication and software isolation for automotive
control networks,” in Annual Computer Security Applications Con-
ference (ACSAC), 2017.

[14] S. Nürnberger and C. Rossow, “vatican - vetted, authenticated CAN
bus,” in Cryptographic Hardware and Embedded Systems (CHES),
2016, pp. 106–124.

[15] A. Radu and F. D. Garcia, “Leia: A lightweight authentication pro-
tocol for CAN,” in European Symposium on Research in Computer
Security (ESORICS), 2016, pp. 283–300.

[16] S. Vanderhallen, J. Van Bulck, F. Piessens, and J. T. Mühlberg,
“Robust authentication for automotive control networks through
covert channels,” Computer Networks, vol. 193, 2021.

[17] J. Noorman, J. T. Mühlberg, and F. Piessens, “Authentic execution
of distributed event-driven applications with a small TCB
[supplementary materials],” Tech. Rep., 2017. [Online]. Available:
https://downloads.distrinet-research.be/software/sancus/stm17/sec
argument.pdf

[18] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published
attacks on intel SGX,” CoRR, vol. abs/2006.13598, 2020.

[19] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and
G. Tsudik, “On the TOCTOU problem in remote attestation,”
in ACM Conference on Computer and Communications Security
(CCS), 2021.

[20] L. Simon, D. Chisnall, and R. J. Anderson, “What you get is what
you C: Controlling side effects in mainstream C compilers,” in
IEEE European Symposium on Security and Privacy (EuroS&P),
2018.

[21] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol.
ePrint Arch., 2016.

[22] A. Caulfield, N. Rattanavipanon, and I. De Oliveira Nunes, “ACFA:
Secure runtime auditing & guaranteed device healing via active
control flow attestation,” in USENIX Security Symposium, 2023.

[23] P. Frolikov, Y. Kim, R. T. Prapty, and G. Tsudik, “TOCTOU
resilient attestation for iot networks (full version),” CoRR, vol.
abs/2502.07053, 2025.

[24] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base,” in USENIX Security Symposium,
2013.

[25] O. Girard, “openmsp430,” 2017. [Online]. Available: https://gith
ub.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf

[26] Texas Instruments, “MSP430x1xx family: User’s guide,” https://
www.ti.com/lit/ug/slau049f/slau049f.pdf, 2006.

[27] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Duplexing
the sponge: Single-pass authenticated encryption and other appli-
cations,” in Selected Areas in Cryptography, ser. Lecture Notes in
Computer Science, vol. 7118, 2011, pp. 320–337.

[28] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and
I. Verbauwhede, “SPONGENT: The design space of lightweight
cryptographic hashing,” IEEE Trans. Computers, vol. 62, no. 10,
pp. 2041–2053, 2013.

[29] J. Pennekamp, F. Alder, R. Matzutt, J. T. Mühlberg, F. Piessens,
and K. Wehrle, “Secure end-to-end sensing in supply chains,”
in IEEE Conference on Communications and Network Security
(CNS), 2020, pp. 1–6.

[30] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Advances in Cryptology
- CRYPTO, vol. 1109, 1996.

[31] C. Rebeiro, D. Mukhopadhyay, and S. Bhattacharya, Timing Chan-
nels in Cryptography: A Micro-Architectural Perspective. Springer
Publishing Company, Incorporated, 2014.

[32] T. Goodspeed, “Practical attacks against the msp430 bsl,” in
Twenty-Fifth Chaos Communications Congress, 2008.

[33] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary CPU interrupt logic,”
in ACM Conference on Computer and Communications Security
(CCS), 2018.

[34] M. Bognar, J. Van Bulck, and F. Piessens, “Mind the gap: Studying
the insecurity of provably secure embedded trusted execution ar-
chitectures,” in IEEE Symposium on Security and Privacy (S&P),
2022.

[35] C. Rodrigues, D. Oliveira, and S. Pinto, “Busted!!! microarchitec-
tural side-channel attacks on the MCU bus interconnect,” in IEEE
Symposium on Security and Privacy (S&P), 2024.

[36] H. Winderix, J. T. Mühlberg, and F. Piessens, “Compiler-assisted
hardening of embedded software against interrupt latency side-
channel attacks,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2021.

[37] M. Bognar, H. Winderix, J. Van Bulck, and F. Piessens, “Micropro-
filer: Principled side-channel mitigation through microarchitectural
profiling,” in IEEE European Symposium on Security and Privacy
(EuroS&P), 2023.

[38] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano,
J. T. Mühlberg, and F. Piessens, “Securing interruptible enclaved
execution on small microprocessors,” ACM Trans. Program. Lang.
Syst., vol. 43, no. 3, 2021.

https://www.ti.com/lit/an/slaa685/slaa685.pdf
https://www.ti.com/lit/an/slaa685/slaa685.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70179a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70179a.pdf
https://downloads.distrinet-research.be/software/sancus/stm17/secargument.pdf
https://downloads.distrinet-research.be/software/sancus/stm17/secargument.pdf
https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf
https://github.com/olgirard/openmsp430/blob/master/doc/openMSP430.pdf
https://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://www.ti.com/lit/ug/slau049f/slau049f.pdf

TABLE 5. EXECUTION TIME OF THE SECURE MEMCMP FUNCTION
FOR A PARTIALLY CORRECT BUFFER SIMULATED ON OPENMSP430.

Correct bytes 0 1 2 3 4 5

Clock cycles 60 76 95 114 133 138

[39] “Authenticexecution/spongent-cpp-rs - github.” [Online]. Available:
https://github.com/AuthenticExecution/spongent-cpp-rs/blob/mai
n/spongent.cpp

[40] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical
attack framework for precise enclave execution control,” in Work-
shop on System Software for Trusted Execution (SysTEX), 2017.

[41] “Vrased+ - github.” [Online]. Available: https://github.com/sprou
t-uci/vrased-plus/blob/main/vrased/sw-att/wrapper.c

[42] “twisted-pear/mcfd - github.” [Online]. Available: https://github.c
om/twisted-pear/mcfd/blob/master/src/common/crypto helpers.c

[43] S. Pouyanrad, J. T. Mühlberg, and W. Joosen, “Scfmsp: static
detection of side channels in MSP430 programs,” in International
Conference on Availability, Reliability and Security (ARES), 2020.

Appendix A.
secure_memcmp Attack

The secure_memcmp function (Listing 1) is used to
compare two buffers. However, unlike the name suggests,
this function is timing-dependent. In addition, an attacker
can exploit this timing dependency to improve linear
brute-force attacks using binary search, since a guessed
byte that is smaller than the correct byte will take longer
to compare than a guessed byte that is bigger than the
correct one. Table 5 shows the execution time of the
secure_memcmp function for a partially correct buffer,
as measured on the openMSP430 core for the compiled as-
sembly code in Listing 4. Note that different compilers and
optimization levels generate similarly vulnerable assembly
code for the secure_memcmp function of Listing 1.

Appendix B.
Compiler Analysis Code

We provide two assembly code snippets showing how
comparison code at the C level (Listing 5) can be compiled
in timing-dependent and timing-independent ways. The
vulnerable code is compiled using MSP430 gcc 14.2.0
(Listing 6) and optimized for space usage (-Os), while
the safe code is compiled using sancus-cc (Listing 7).

Appendix C.
HandleInput Authentic Execution Code

Listing 8 provides the HandleInput code inserted
by the Sancus compiler to transparently handle authentic-
execution entry points as discussed in Section 3.3. The
vulnerable sancus_unwrap call is on line 29.

Appendix D.
Hardware Mitigations FSMs

The modified FSMs for the two hardware mitigations
discussed in Section 4.3 are shown in Figures 2 and 3.

1 secure_memcmp:
2 push.w r4
3 mov.w r1, r4
4 push.w r11
5 push.w r10
6 push.w r9
7 mov.w #0, r12
8 cmp.w #1, r13
9 jl .LBB0_9

10 mov.w #1, r11
11 .LBB0_2:
12 cmp.w #1, r11
13 jne .LBB0_8
14 mov.b 0(r14), r11
15 mov.b 0(r15), r10
16 cmp.b r10, r11
17 jhs .LBB0_5
18 mov.w #0, r11
19 mov.w #1, r12
20 jmp .LBB0_8
21 .LBB0_5:
22 mov.w #-1, r9
23 cmp.b r11, r10
24 jlo .LBB0_7
25 mov.w r12, r9
26 .LBB0_7:
27 cmp.b r11, r10
28 mov.w r2, r11
29 and.w #1, r11
30 mov.w r9, r12
31 .LBB0_8:
32 add.w #1, r14
33 add.w #1, r15
34 add.w #-1, r13
35 cmp.w #0, r13
36 jne .LBB0_2
37 .LBB0_9:
38 mov.w r12, r15
39 pop.w r9
40 pop.w r10
41 pop.w r11
42 pop.w r4
43 ret

Listing 4. Listing 1 compiled using sancus-cc based on
LLVM/clang v4.0.1 and optimized for space usage (-Os).

1 void cmp_secret64(uint64_t a, uint64_t b) {
2 if (a == b) helper_func();
3 }
4 void cmp_secret32(uint32_t a, uint32_t b) {
5 if (a == b) helper_func();
6 }
7 void cmp_secret16(uint16_t a, uint16_t b) {
8 if (a == b) helper_func();
9 }

Listing 5. Code snippet comparing integers of different sizes.

VERIFY_TAG

VERIFY_TAG_WAIT

FAIL

SUCCES

INCORRECT WORD

FINISHED

FIN
IS

H
E
D

C
O

R
R

E
C
T

W
O

R
D

BUSY
CALCULATING
NEXT WORD

F
IN

IS
H

E
D

DUMMY

DUMMY_WAIT

N
O

T FIN
IS

H
E
D

BUSY
CALCULATING
NEXT WORD

Figure 2. Cryptographic FSM with extra states to delay the final result.

https://github.com/AuthenticExecution/spongent-cpp-rs/blob/main/spongent.cpp
https://github.com/AuthenticExecution/spongent-cpp-rs/blob/main/spongent.cpp
https://github.com/sprout-uci/vrased-plus/blob/main/vrased/sw-att/wrapper.c
https://github.com/sprout-uci/vrased-plus/blob/main/vrased/sw-att/wrapper.c
https://github.com/twisted-pear/mcfd/blob/master/src/common/crypto_helpers.c
https://github.com/twisted-pear/mcfd/blob/master/src/common/crypto_helpers.c

1 cmp_secret64:
2 pushm.w #2, r10
3 mov.w 8(r1), r9
4 mov.w 10(r1), r10
5 mov.w 12(r1), r11
6 cmp.w 6(r1), r12
7 jne .L1
8 cmp.w r9, r13
9 jne .L1

10 cmp.w r10, r14
11 jne .L1
12 cmp.w r11, r15
13 jne .L1
14 call #helper_func
15 .L1:
16 popm.w #2, r10
17 ret
18 cmp_secret32:
19 cmp.w r14, r12
20 jne .L3
21 cmp.w r15, r13
22 jne .L3
23 call #helper_func
24 .L3:
25 ret
26 cmp_secret16:
27 cmp.w r13, r12
28 jne .L5
29 call #helper_func
30 .L5:
31 ret

Listing 6. Listing 5 compiled using MSP430 gcc 14.2.0 and optimized
for space usage (-Os).

1 cmp_secret64:
2 push.w r4
3 mov.w r1, r4
4 xor.w 10(r4), r15
5 xor.w 6(r4), r13
6 bis.w r15, r13
7 xor.w 8(r4), r14
8 xor.w 4(r4), r12
9 bis.w r14, r12

10 bis.w r13, r12
11 cmp.w #0, r12
12 jne .LBB0_2
13 call #helper_func
14 .LBB0_2:
15 pop.w r4
16 ret
17 cmp_secret32:
18 push.w r4
19 mov.w r1, r4
20 xor.w r13, r15
21 xor.w r12, r14
22 bis.w r15, r14
23 cmp.w #0, r14
24 jne .LBB1_2
25 call #helper_func
26 .LBB1_2:
27 pop.w r4
28 ret
29 cmp_secret16:
30 push.w r4
31 mov.w r1, r4
32 cmp.w r14, r15
33 jne .LBB2_2
34 call #helper_func
35 .LBB2_2:
36 pop.w r4
37 ret

Listing 7. Listing 5 compiled using sancus-cc based on
LLVM/clang v4.0.1.

1 uint16_t SM_ENTRY(SM_NAME) __sm_handle_input(
uint16_t conn_idx,

2 const void* payload, size_t len)
3 {
4 // sanitize input buffer
5 if(!sancus_is_outside_sm(SM_NAME, (void *)

payload, len)) {
6 return BufferInsideSM;
7 }
8

9 // check correctness of other parameters
10 if(len < SANCUS_TAG_SIZE || conn_idx >=

__sm_num_connections) {
11 return IllegalParameters;
12 }
13

14 Connection *conn = &__sm_io_connections[
conn_idx];

15

16 // check if io_id is a valid input ID
17 if (conn->io_id >= SM_NUM_INPUTS) {
18 return IllegalConnection;
19 }
20

21 // associated data only contains the nonce,
22 // therefore we can use this trick to build
23 // the array fastly (i.e. by swapping the
24 // bytes)
25 const uint16_t nonce_rev = conn->nonce << 8

| conn->nonce >> 8;
26 const size_t data_len = len -

SANCUS_TAG_SIZE;
27 const uint8_t* cipher = payload;
28 const uint8_t* tag = cipher + data_len;
29 uint8_t* input_buffer = alloca(data_len);
30

31 if (sancus_unwrap_with_key(conn->key, &
nonce_rev, sizeof(nonce_rev),

32 cipher, data_len, tag, input_buffer)) {
33 conn->nonce++;
34 __sm_input_callbacks[conn->io_id](

input_buffer, data_len);
35 return Ok;
36 }
37

38 // here only if decryption fails
39 return CryptoError;
40 }

Listing 8. HandleInput entry point generated by Sancus authentic
execution framework.

VERIFY_TAG

VERIFY_TAG_WAIT

FAIL

SUCCES

F
IN

IS
H

E
D

 &
P

A
R

T
LY

W
R

O
N

G

FINISHED &
FULLY CORRECT

NOT FINISHED
BUSY

CALCULATING
NEXT WORD

Figure 3. Cryptographic FSM with an extra register to keep track of the
result of the comparison.

	Introduction
	Background & Related Work
	Embedded Trusted Execution Environments
	Authenticity Guarantees
	Side-Channel Analysis on Low-End MCUs

	Leakage in the Hardware-Software Stack
	Standard Library Functions
	Compiler Analysis
	Hardware Timing Vulnerability

	Discussion and Mitigations
	Using Formal Methods
	Software Mitigations
	Hardware Mitigation

	Conclusion
	References
	Appendix A: secure_memcmp Attack
	Appendix B: Compiler Analysis Code
	Appendix C: HandleInput Authentic Execution Code
	Appendix D: Hardware Mitigations FSMs

