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Abstract—Confidential computing ensures data in-use pro-
tection in untrusted cloud environments, yet securing data at-
rest typically relies on Full Disk Encryption (FDE), which im-
poses significant performance overhead. This work proposes
an alternative in-memory storage approach that eliminates
FDE by leveraging SEV-SNP confidential virtual machines
(CVMs). Our framework extends SNPGuard, an open-source
platform for booting and attesting SEV-SNP VMs, to manage
workload execution using temporary file systems (tmpfs),
inherently secured by CVM memory encryption. By en-
abling seamless deployment of Docker based applications,
our approach improves runtime and throughput by 20%
on average, with peak gains of 45% in read-only database
workloads. These findings establish in-memory storage as
a secure and performant alternative to FDE for handling
temporary intermediate data in storage intensive workflows,
laying the foundation for future research in this direction.

1. Introduction

Cloud computing has become a fundamental solu-
tion for outsourcing computational workloads, allowing
users to access scalable infrastructure on demand. Leading
providers such as Amazon, Microsoft, Google, and IBM
offer flexible resource allocation, enabling cost efficiency,
seamless scalability, and enhanced reliability. However,
mitigating privacy concerns remains a significant chal-
lenge, particularly when handling sensitive user data [1]–
[3]. These concerns are further amplified by stringent
regulatory frameworks like the General Data Protection
Regulation (GDPR) [4], the Health Insurance Portability
and Accountability Act (HIPAA) [5], and the California
Consumer Privacy Act (CCPA) [6], which impose strict
requirements on data protection and compliance.

Confidential computing [7], [8] addresses these pri-
vacy concerns by leveraging specialized hardware to en-
force security guarantees for data in-use. However, en-
suring confidentiality during computation alone is insuffi-
cient; data must also be protected while in-transit across
networks and when stored persistently at-rest. Achiev-
ing end-to-end data protection requires integrating com-
plementary security mechanisms. Well-established tech-
niques such as Transport Layer Security (TLS) [9] and
Secure Shell (SSH) [10] secure data in-transit, while full-
disk encryption (FDE) [11], [12] safeguards data at-rest.
Technologies like Linux Unified Key Setup (LUKS) [13],

[14] provide robust encryption mechanisms at the stor-
age level. However, our microbenchmark results in §5.1
demonstrate that FDE can introduce substantial perfor-
mance overhead, making it a less efficient solution for
storage intensive workloads.

This work explores an alternative approach that dele-
gates data at-rest protection to the same mechanisms used
for safeguarding data in-use. Specifically, we present a
framework based on prior research on AMD confiden-
tial computing technologies, called SNPGuard [15]. Our
framework [16] enables the seamless execution of end-
to-end confidential workloads within a Docker [17] con-
tainer, eliminating the need for traditional disk encryption.
Instead, it leverages temporary file systems (tmpfs) [18],
which inherently benefit from AMD’s memory encryp-
tion mechanisms. By relying on encrypted memory rather
than persistent storage, this approach mitigates the perfor-
mance penalties associated with FDE while maintaining
strong security guarantees. Our results demonstrate that
our framework improves the runtime and throughput of
storage intensive workloads by 20% on average, with
peak gains of 45% in read-intensive database workloads.
Even though FDE is a straightforward solution for long-
term storage of workload results, we demonstrate that
leveraging in-memory file systems for temporary interme-
diate data is an effective technique to accelerate storage
intensive workloads.

The remainder of this paper is organized as follows.
§2 provides an overview of existing confidential comput-
ing technologies and a brief description of AMD Secure
Encrypted Virtualization (SEV), including its architecture,
attestation flow, and how to obtain end-to-end workload
protection. §3 reviews prior studies on I/O protection in
confidential computing and describes the SNPGuard setup
for attested confidential VMs. §4 details our framework,
which extends SNPGuard to enable seamless execution
of end-to-end protected Docker workloads. §5 presents
microbenchmark results assessing the overhead of FDE,
along with two macrobenchmarks, evaluating compres-
sion/decompression performance and on database work-
loads, respectively. §6 discusses the limitations of our
approach and proposes potential future research directions.
Finally, §7 concludes by summarizing our key findings.



2. Background

The primary objective of confidential computing is
to protect data in-use by establishing Trusted Execution
Environments (TEEs). A TEE provides code integrity,
data confidentiality, and remote attestation procedures to
verify its authenticity [19]. TEEs can be categorized into
two primary isolation models. The first is process-based
isolation, where security is enforced at the process level.
Notable implementations include Intel Software Guard
Extensions (SGX) [20] and Arm TrustZone [21], [22]. The
second model is VM-based isolation, which extends pro-
tection to the entire virtual machine. Prominent examples
of this approach include Intel Trust Domain Extensions
(TDX) [23], [24], AMD SEV [25]–[27], Arm Confidential
Compute Architecture (CCA) [28], RISC-V Confidential
Virtual Environments (CoVE) [29], IBM OpenPOWER
ISA [30], IBM Secure Execution for Linux [31], and
NVIDIA’s confidential VMs for its Hopper GPUs [32].

This work focuses on AMD SEV. The following
sections provide a technical overview of its architecture
(Section 2.1) and describe how to achieve end-to-end con-
fidentiality through attestation mechanisms (Section 2.2).

2.1. AMD SEV

Secure Memory Encryption (SME) [25] is an AMD se-
curity feature designed to enhance memory confidentiality
by encrypting memory pages using a hardware-integrated
AES encryption engine and a dedicated C-bit marker. The
AES encryption key is randomly generated and securely
managed by the AMD Secure Processor (ASP), ensuring
that encryption is applied transparently to memory man-
agement operations without necessitating modifications to
the operating system or application software.

Building upon SME, Secure Encrypted Virtualization
(SEV) [25] integrates memory encryption into AMD Vir-
tualization (AMD-V) [33] to establish isolated execution
environments for guest virtual machines. SEV assigns a
unique encryption key to each VM using Address Space
Identifier (ASID) tags, ensuring that encrypted data re-
mains inaccessible to unauthorized entities, including the
hypervisor and host operating system.

SEV memory pages are categorized as either private
or shared, utilizing the SME C-bit mechanism to differ-
entiate between them. Private pages are encrypted with
VM-specific keys, ensuring strict isolation and prevent-
ing unauthorized access. Instead, shared pages remain
unprotected, requiring additional security mechanisms to
safeguard sensitive data. To mitigate potential vulnerabil-
ities, SEV enforces the confidentiality of critical memory
regions, such as instruction pages and page tables, by
designating them as private. Conversely, Direct Mem-
ory Access (DMA) operations are confined to shared
memory, preventing unauthorized entities from accessing
confidential data. SEV provides transparent protection for
data in-use, but it does not inherently secure data during
transmission or storage. To achieve comprehensive, end-
to-end confidentiality, complementary security solutions
must be implemented, ensuring that data remain protected
throughout their entire lifecycle.

SEV Encrypted State (SEV-ES) [26] enhances SEV
by encrypting VM register states, preventing unauthorized
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Figure 1. SEV-SNP attestation flow: trusted components are highlighted
in green, while untrusted components are shown in red.

access to execution data. When a VM is suspended, its
registers — typically stored in hypervisor accessible mem-
ory — are encrypted using the VM’s memory encryption
key. To ensure integrity, the hardware generates a verifi-
cation value during save and restore operations, which is
stored in a protected memory region and validated upon
resumption, preventing tampering.

SEV Secure Nested Paging (SEV-SNP) [27] is the
latest advancement in SEV technology, enhancing mem-
ory integrity protections by ensuring that private memory
always reflects the VM’s most recent writes. It achieves
this goal through security mechanisms such as the Reverse
Map Table (RMP) for tracking memory mappings, page
validation for enforcing integrity constraints, and page
state tracking for monitoring access permissions.

2.2. End-to-end data protection with SEV

SEV-SNP guarantees data confidentiality and integrity
during VM execution. However, the VM launch process
takes place in an untrusted environment, such as a cloud
provider’s infrastructure. Remote attestation [27] provides
cryptographic proof of both the authenticity of the under-
lying hardware and the integrity of the software running
within the confidential VM. Nevertheless, while SEV-
SNP enforces memory protection, its security guarantees
do not inherently extend to end-to-end data protection,
delegating the protection of data in-transit and at-rest to
complementary mechanisms.
Attestation flow. The attestation procedure involves a
relying party, typically the VM owner, who wants to
verify the authenticity of a VM launched within an
untrusted cloud infrastructure as shown in Fig. 1. The
VM owner provides the cloud with a VM image for
deployment (Fig. 1-➊). During the launch process, the
hypervisor requests the ASP (Fig. 1-➋) to initialize the
guest VM’s memory pages and generate a cryptographic
measurement of this initial state (Fig. 1-➌). By default,
this measurement primarily reflects the virtual firmware
and a few initial CPU register values. However, the pro-
cess can be enhanced by leveraging modified versions
of QEMU (as the hypervisor) [34] and OVMF (as the
virtual firmware) [35]. These extensions enable additional



space within the OVMF executable to store hashes of
critical components, including the kernel, initramfs, and
kernel command line. During VM initialization, QEMU
computes and injects these hashes into the OVMF, which
then verifies them at runtime. Consequently, attestation
extends beyond the OVMF firmware itself, covering the
loaded kernel, boot parameters and initramfs. In order to
obtain the attestation report, the VM owner sends a nonce
to the guest VM (Fig. 1-➍), which in turn requests it
from the ASP through a secure communication channel
(Fig. 1-➎). The generated report includes a measurement
of the VM’s initial state, platform details, and Trusted
Computing Base (TCB) status. Additionally, it may con-
tain arbitrary user-defined data, which can be used for key
exchange algorithms or nonces to prevent replay attacks.
Once the guest VM receives the report, it forwards it to
the VM owner (Fig. 1-➏), who verifies its authenticity
by validating it against AMD’s certificate chain. Upon
successful attestation, the VM owner can, if necessary,
securely provision sensitive data, such as an encryption
key needed to unlock the virtual disk. Previous research
has extensively examined the security guarantees of SEV
attestation [36] and proposed methodologies to streamline
attestation procedures [15], [37], [38].
Protection in-transit and at-rest. Since shared mem-
ory pages of a confidential VM fall outside SEV-SNP’s
security guarantees, achieving end-to-end confidentiality
requires additional safeguards. Protecting data in-transit
between the VM owner and the VM itself necessitates
secure communication channels, such as TLS or SSH.
Furthermore, securing data at-rest — specifically during
read and write operations on virtual storage — remains
a critical challenge. A common approach is FDE us-
ing LUKS, but this introduces significant performance
overhead. In contrast, we propose an alternative strategy
that mitigates this overhead by leveraging tmpfs-mounted
directories within the VM. Since tmpfs operates entirely in
volatile memory, which is inherently protected by SEV-
SNP, data never resides on a persistent storage device,
significantly reducing I/O overhead. However, this ap-
proach also introduces challenges related to data persis-
tence, as all stored data is lost upon VM shutdown. We
use a straightforward orchestration method for managing
confidential VMs under volatile constraints, leaving the
development of more sophisticated orchestration strategies
for future research.

3. Related work

M. Yan and K. Gopalan [39] highlight that disk I/O
suffers from significant performance degradation when us-
ing SEV, with penalties reaching up to 56%. Similarly, L.
Qiu et al. [40] present microbenchmark results indicating
that a non-confidential VM can perform disk operations at
twice the speed of a SEV VM. Furthermore, M. Misono
et al. [41] observe that when CPU utilization is high,
the I/O overhead stems from the internal implementation
of default I/O software stacks, which rely on bounce
buffers. These buffers are essential for SEV to handle I/O
operations, as they require an additional copy of the data
from private VM pages to unprotected shared pages. Given
these challenges, achieving efficient I/O performance in
confidential computing environments is crucial.

However, as H. Lefeuvr et al. [42] noted, the security
and efficiency of confidential I/O remain largely unex-
plored. The authors emphasize that designing secure and
efficient I/O interfaces is a complex task. One approach
to addressing I/O bottlenecks is optimizing the software
stack that manages I/O operations. Another promising
strategy is extending the trust boundary to include de-
vices capable of operating directly within the confidential
VM’s private memory. AMD SEV-TIO [43] and Intel
TDX Connect [44] aim to improve I/O performance by
enabling direct interaction between hardware components
and confidential memory pages.

To evaluate our methodology, which relies on volatile
computation within tmpfs mounted directories inside an
SEV-SNP VM, we utilize SNPGuard [15], an effective
open-source solution for deploying guest VMs with or
without LUKS FDE. It allows direct Linux booting with
a specified SEV-SNP-enabled kernel and an arbitrary
initramfs. With SNPGuard two kind of workflows are
available. In the confidentiality and integrity workflow,
the virtual disk is ciphered and disk encryption keys
are provisioned during the initramfs phase via remote
attestation using a Diffie-Hellman key exchange [45]. In
the integrity-only workflow, the VM operates with a non-
confidential, read-only disk, where its integrity is verified
during the initramfs phase at launch. Since directories
such as /home, /etc, and /var require write access,
they are mounted as tmpfs, ensuring their protection
through SEV-SNP’s memory encryption. In this case,
secrets can be securely provisioned after attestation, but
workload setup and execution remain the responsibility of
the VM owner. Our framework extends the integrity-only
workflow by enabling seamless deployment of arbitrary
Docker containers through a simple JSON configuration.
This approach eliminates the performance overhead of
FDE, replacing it with a more efficient in-memory storage
solution, significantly improving execution speed while
maintaining strong security guarantees.

4. Methodology

Management of volatile computations. After booting
with SNPGuard’s integrity-only workflow, the VM re-
mains unattested. However, during the initramfs phase,
the VM stores the attestation report in /etc, which is
secured by being mounted as tmpfs. The first necessary
step is to retrieve and validate this report to ensure that
the VM has booted correctly. Once attestation is verified,
the VM owner can begin using the confidential VM. In
this setup, the responsibility for configuring and executing
workloads falls entirely on the VM owner, who must also
address challenges related to operating in a volatile mem-
ory environment. Since only /home, /etc, /var and
/tmp are mounted as tmpfs, the rest of the disk remains
non-confidential and read-only. Consequently, workloads
requiring write access outside these directories cannot
run. Another limitation arises from the static allocation
of tmpfs sizes in the integrity workflow. These sizes
are hardcoded during the initramfs compilation, requiring
recompilation for any modifications, which significantly
reduces flexibility for the VM owner.

Our framework addresses these limitations by allowing
tmpfs sizes to be specified at launch without requiring
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Figure 2. Execution flow for achieving end-to-end confidentiality in a
Docker workload. Blue indicates folders mounted as tmpfs, while all
other directories are mounted in a standard read-only configuration.

initramfs recompilation and by leveraging Docker for
workload portability. Docker operates, using an overlay
filesystem [46], primarily within specific system directo-
ries such as /var/lib/docker. A Docker image is
built from an arbitrary Dockerfile, configuring the nec-
essary dependencies within this location. When executed,
the container utilizes the same overlay filesystem, ensuring
that all runtime writes occur within predefined directories
mounted as tmpfs. This guarantees that all modifications
remain within SEV-SNP-protected memory, enabling the
execution of applications in a volatile memory environ-
ment while maintaining portability.

In cloud environments, workloads often process sen-
sitive data that require end-to-end protection throughout
their lifecycle. Ensuring confidentiality demands secure
data transmission between the VM owner and the cloud
provider after attestation. To achieve this, our framework
employs SSH for securing data in-transit and relies on
tmpfs to protect data at-rest. Once the Docker image
is built within the VM and the necessary data is se-
curely transferred, the container must be executed. A key
challenge lies in correctly mapping data volumes [47]
between the VM and the container, ensuring proper ac-
cess to required files. This is managed by provisioning a
JSON configuration file, which specifies essential options,
including the correct directory mappings and the VM
owner’s designated folder for securely collecting results
before the VM is shut down.
End-to-end confidentiality execution flow. The VM
owner possesses VM image, confidential data, a Dock-
erfile defining the image that will process the data, and a
configuration file specifying critical settings such as input
mappings between local data and the container, as well
as the location designated to collect the workload results.
Figure 2 illustrates the process for achieving end-to-end
confidential workload execution without relying on costly
FDE techniques. Our framework automates the deploy-
ment of the VM using SNPGuard’s integrity workflow
(Fig. 2-➊). Once the VM is booted, the attestation report
is retrieved and validated (Fig. 2-➋). If verification is
successful, the next step is securely transferring the Dock-
erfile and input data specified in the JSON configuration
file into the VM (Fig. 2-➌). The Docker image is then
built inside the VM (Fig. 2-➍), followed by the execution
of the container, ensuring that all necessary volumes are
correctly mounted according to the predefined directories

within the VM. Upon completion of the computation, if
the workload produces output data, the VM owner initiates
a secure retrieval process to ensure that all specified results
are safely transferred back (Fig. 2-➎). Once the data
transfer is complete, the VM can be shut down without
any risk of data loss.

5. Results

Testbed. All experiments were conducted on a machine
equipped with an AMD EPYC 9124 (4th Gen. Genoa)
processor, featuring 16 physical cores and simultaneous
multithreading (SMT) for a total of 32 threads. The system
includes 66 GiB of RAM and 512 GB of SSD storage. The
host operating system is Ubuntu 22.04.5, running kernel
version 6.9.0-rc7-snp-host-05b10142ac6a. We deployed
three different VMs, each with identical virtual hardware
specifications, including 32 vCPUs, 32 GiB of RAM, and
a 70 GB scsi-hd virtual disk. All VMs run Ubuntu 22.04.5
with kernel 6.9.0-snp-guest-a38297e3fb01 and identical
software components, such as Docker. The only difference
among them is the filesystem configuration (with ext4 as
the baseline), allowing us to compare different data at-rest
protection techniques:

std A standard SEV-SNP VM.
FDE A SEV-SNP VM utilizing LUKS FDE.
tmpfs A SEV-SNP VM that leverages tmpfs

mounted directories to secure data at-rest.

To evaluate LUKS FDE performance, in Section 5.1
we perform various Flexible I/O (fio) [48] microbench-
marks on the three SEV-SNP VMs. Additionally, we
assess the efficiency of our volatile end-to-end confiden-
tiality framework using two storage intensive macrobench-
marks: compression and decompression with tar and
gzip (Section 5.2) and multiple YCSB [49] database
workloads on RocksDB [50] (Section 5.3). To ensure a fair
comparison between VM configurations, the macrobench-
mark workloads are executed within the same Docker
container, built from an identical Docker image.

5.1. fio

Figure 3 illustrates the fio microbenchmark results
using four job threads, a 4 kB block size, a 2 GB test
file, and direct I/O with the libaio engine to bypass
the OS page cache for accurate raw storage performance
measurement. In the read benchmark (Figure 3a), the
tmpfs solution achieves a significant performance boost,
with bandwidth, throughput, and latency improvements
of approximately 1200% compared to FDE and 540%
compared to a standard virtual disk. While this drastic
performance difference is expected, given that tmpfs op-
erates entirely in memory — making it inherently faster
than traditional storage — it is also noteworthy that FDE
introduces a substantial overhead compared to an unen-
crypted virtual disk. This suggests that for real-world stor-
age intensive workloads, the performance penalty of FDE
could be pronounced. Consequently, leveraging tmpfs for
volatile computation within a confidential computing en-
vironment, where memory is already protected, becomes
an even more compelling approach. The write benchmark
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Figure 3. fio benchmarks, 4 threads, 4k blocksize, 2G test file size, 16
IOdepths, libaio engine and direct storage access. The bars represent
bandwidth, throughput and latencies values for different SEV-SNP VM
configurations: std without disk encryption, FDE using LUKS disk
encryption and tmpfs mounting solution. The text within bars indicates
the performance gaining obtained using tmpfs. (a) Read, (b) Write and
(c) Read and Write.

(Figure 3b) shows an even greater disparity, with tmpfs
achieving performance gains of approximately 7000%
over FDE and 2000% over an unencrypted virtual disk.
Mixed read/write workloads (Figure 3c) exhibit perfor-
mance improvements in between these extremes, with
tmpfs outperforming FDE by around 3100% and a stan-
dard disk configuration by about 830%.

We tested numerous fio parameter combinations
across the three VM configurations. While we do not
report all results here due to their consistency with the dis-
cussed trends, additional observations emerged. Increasing
the number of jobs (tested with 1, 4, and 8 jobs) further
amplifies the performance gains of the tmpfs solution.
Conversely, increasing the block size (tested with 4 kB,
16 kB, 64 kB, and 1 MB) results in a decrease in tmpfs
performance gains relative to the other configurations.

5.2. Compression and decompression

Compression and decompression tasks are inherently
storage intensive when processing large files. We selected
approximately 10 GB from an open dataset containing
video clips of human actions [51]. We then executed the
tar command to archive and compress/decompress the
selected data. Figure 4 presents the average runtime results
of three executions for compression and decompression
across all SEV-SNP VM configurations. The deviation
from the mean is not reported, as it is not significant.
The compression task shows minimal benefit from our
volatile computation approach, yielding only a 6.39%
performance improvement compared to FDE. This limited
gain is likely because compression relies heavily on CPU-
bound operations rather than disk I/O, reducing the impact
of storage performance on overall execution time.

In contrast, decompression exhibits a more significant
performance improvement, with the tmpfs based approach
achieving approximately 20% faster execution compared
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runtime of three execution across different configurations: std without
disk encryption, FDE using LUKS disk encryption and tmpfs mounting
solution with our execution framework. The text within the bars indicates
the performance gain achieved with tmpfs.

to FDE. This difference can be attributed to the higher
dependency of decompression on disk read performance.
Since tmpfs operates in memory, it eliminates the over-
head of reading from an encrypted disk, leading to a
noticeable reduction in runtime.

5.3. RocksDB

Database management workloads can significantly
benefit from volatile execution. To investigate this, we ran
various YCSB workloads on a RocksDB database across
three SEV-SNP VM configurations. Figure 5 shows the
average runtime, throughput, and operation latencies of
three execution for six different workloads under each
configuration. As for compression/decompression tasks,
the deviation is not reported, as it was not significant.

In the read-update workload (Figure 5a), where read
and update operations are evenly mixed, our tmpfs based
solution improves runtime and throughput by approxi-
mately 20% compared to FDE. A similar improvement
is observed in the workload where an update immediately
follows a read (Figure 5d). In this case, the runtime benefit
is around 18%. In contrast, in a workload with 95% reads
and 5% updates (Figure 5b), the tmpfs solution achieves
only about a 12% gain in runtime and throughput. Also
the workload with 95% reads and 5% inserts (Figure 5c)
shows a similar, modest improvement of roughly 10%.
The most significant benefits are observed in the mixed
update-insert workload (Figure 5e), which yields a runtime
improvement of about 25%, and in the read-only workload
(Figure 5f), where tmpfs delivers a throughput gain of up
to 45%. Overall, the tmpfs solution reduces read latencies
by between 10% and 213% relative to FDE. Update laten-
cies improve by 13–30%, and insert latencies consistently
show a 30% gain across all workloads.

These results can be explained by considering the
nature of disk encryption overhead. In read-only work-
loads, FDE imposes significant decryption overhead for
each access, as demonstrated by the highest latencies,
making tmpfs — which operates entirely in memory —
far superior. However, introducing even a small fraction
of update operations brings additional factors into play,
such as cache pressure and memory consistency mech-
anisms. While modern CPUs employ store buffers and
write-back caching to optimize writes, updates can still
lead to increased cache contention, eviction, or coherence
traffic. This process reduces the relative advantage of
tmpfs over FDE, as both systems must frequently access
memory, partially mitigating FDE’s decryption overhead.
Additionally, the FDE system can optimize low-frequency
writes through caching and batching, further narrowing



the performance gap. Thus, while read-only workloads
showcase the maximum benefit of tmpfs, mixed workloads
reveal a more nuanced performance gain for volatile tmpfs
based computation.
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Figure 5. RocksDB YCSB workloads. The bars represent the average
runtime, throughput and latencies of three execution across different
configurations: std without disk encryption, FDE using LUKS disk
encryption and tmpfs mounting solution with our execution framework.
The text within the bars indicates the performance gain achieved with
tmpfs. (a) 50% Read, 50% Update, (b) 95% Read, 5% Update, (c)
95% Read, 5% Insert, (d) 50% Read, 50% Read-Modify-Write, (e) 50%
Update, 50% Insert, and (f) 100% Read.

6. Limitations and future work

Limitations. The proposed approach, while offering per-
formance advantages, has limitations due to the nature of
volatile execution. Memory rental costs are higher than
disk storage, posing a cost challenge for large workloads.
Additionally, the volatility of tmpfs impacts reliability,
as data loss occurs when the VM shuts down. In case
of failure, the lack of persistent checkpoints means exe-
cution restarts from scratch. Although result retrieval is
supported, fault tolerance is not inherently provided. Esti-
mating memory requirements is another challenge. While
tmpfs size can be set at launch, determining the optimal

configuration remains the VM owner’s responsibility. In-
put data size and Docker image size can be estimated
beforehand using the docker images command, but
output size is unpredictable. However, since tmpfs allo-
cates space as needed, resource estimation is feasible.
A critical limitation arises when RAM is exhausted, as
storage and VM execution compete for memory.
Future research directions. Our findings establish a
foundation for future research by presenting a lightweight
framework for managing Docker based computations,
demonstrating the performance benefits of volatile ex-
ecution over FDE while maintaining comparable secu-
rity. Tested on AMD SEV-SNP machines, the model is
adaptable to other architectures, such as Intel TDX, as
it employs general CVM principles. Beyond hardware,
the methodology has broader applications in distributed
confidential computing, such as database sharding across
locations with mixed confidentiality requirements. Apply-
ing volatile execution to high-performance, read-heavy
workloads while ensuring robust security demonstrates its
potential for cloud computing and secure data process-
ing. Moreover, replacing naive tmpfs mounts with ad-
hoc user-space file systems [52], [53] and I/O libraries
[54] could reduce I/O overhead in confidential scientific
workflows. Future research will also focus on a more
precise comparative analysis of overhead between volatile
execution and FDE, considering CPU utilization, Docker
build time, CVM boot time, and data retrieval costs to
assess performance and scalability.

7. Conclusion

Our findings from the fio microbenchmarks indicate
that LUKS FDE imposes significant latency on storage
access, which can negatively impact storage intensive ap-
plications deployed in the cloud. This suggests that when
data protection is required throughout its entire lifecycle,
FDE introduces substantial performance overhead. Our
macrobenchmark results confirm this concern, demonstrat-
ing that our framework for volatile Docker execution with
end-to-end data protection achieves an average perfor-
mance improvement of 20% compared to FDE solution,
with a peak gain of 45% for read-only database work-
loads. Read-only computations are particularly well-suited
for volatile execution, as they can be performed without
requiring result retrieval before the VM is terminated. Our
framework provides end-to-end security by protecting data
in-use and at-rest with SEV-SNP technology while secur-
ing data in-transit through SSH channels. The confidential
VM operates with a read-only virtual disk that is integrity
verified, while all sensitive data is securely transmitted
via SSH to a tmpfs-mounted directory inside the VM,
inherently protected by SEV-SNP.
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