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Abstract—Recent advancements in trusted execution envi-
ronments (TEEs) provide strong isolation guarantees for
hardware-protected enclaves within a shared address space.
The advent of commercial solutions like Intel SGX on
high-end processors has spurred a growing open-source
ecosystem of enclave shielding runtimes, along with research
into symbolic execution tools for detecting elusive interface
sanitization bugs. However, despite their inherent similarities
and shared vulnerabilities, automated validation of enclaves
on low-end embedded platforms remains largely unexplored.

This paper ports Pandora, a symbolic execution tool
originally designed for principled validation of high-end
Intel SGX enclaves, to the Sancus research TEE for 16-bit
MSP430 microcontrollers. We introduce a TEE hardware
abstraction layer and extend Pandora’s symbolic memory
model to support non-contiguous Sancus enclaves. Our eval-
uation across different runtimes and applications within the
Sancus ecosystem demonstrates that Pandora autonomously
re-discovers vulnerabilities that were manually patched over
the last decade. Our work lays the foundation for automated
validation of heterogenous enclaves and outlines directions
for future work on interruptibility, real-time guarantees, and
extensions to alternative MSP430 TEEs.

1. Introduction

Trusted execution environments (TEEs) protect data
in use by isolating critical applications within hardware-
enforced protection domains. Early TEE designs, such
as Intel SGX, focused on fine-grained isolation of small
enclaves within the virtual address space of an untrusted
host process. Due to SGX’s popularity in high-end proces-
sors, enclave-specific isolation challenges, such as pointer
safety and register sanitization, have been widely stud-
ied [1], [2], [4], [9], [12], [17], [27], [29], [31]. However,
recent industry trends on “confidential computing” [10]
are shifting toward coarser-grained lift-and-shift isolation,
protecting entire virtual machines (VMs) in untrusted
cloud environments.

At the same time, the rise of the Internet of Things
(IoT) has made small, resource-constrained microcon-
trollers without advanced hardware support for VM-based
isolation ubiquitous in households and industry. These
embedded IoT platforms often lack virtual memory, priv-
ilege rings, or hardware virtualization, necessitating spe-
cialized memory isolation mechanisms. Several low-end
TEE research prototypes [8], [13], [15], [18], [20], [23],
as well as some commercial microcontrollers [5], [19],
[26], include lightweight hardware support to isolate small
enclave regions in the shared physical address space.
Security analyses of these low-end enclaves [5], [6], [29],

[30] have shown that they are prone to the same types
of interface sanitization oversights as their high-end Intel
SGX counterparts. However, despite this striking similar-
ity and the existence of a sizable open-source Intel SGX
software ecosystem and validation tools [1], [4], [9], [17],
[31], the automated validation of enclaves on low-end
embedded platforms remains largely unexplored.

To address this gap, this paper adapts Pandora [1], an
open-source symbolic execution tool based on angr [25]
and originally designed for the principled validation of
high-end Intel SGX enclaves, by introducing a hardware
abstraction layer for flexible extensibility across different
enclave architectures. Using the mature Sancus [20] re-
search TEE for low-end 16-bit MSP430 microcontrollers
as a case study, we extensively refactor Pandora’s code-
base to eliminate x86-specific SGX dependencies and
generalize its symbolic memory model and taint-tracking
mechanisms to support non-contiguous enclave memory
layouts and architecture-specific enclave loaders. Adher-
ing to Pandora’s truthful symbolic execution principles,
we seamlessly integrate angr’s MSP430 back-end, pro-
vide extensible hooks for Sancus-specific cryptographic
and enclave instructions, and precisely model Sancus’s
hardware-enforced access control semantics and exception
behavior. Furthermore, we extend Pandora’s pluggable
vulnerability detection to the MSP430 Sancus TEE, en-
abling automated detection of elusive pointer-sanitization
flaws and control-flow hijacking vulnerabilities in Sancus
enclaves through human-readable HTML reports.

We evaluate our Pandora port through a comprehen-
sive unit-test framework, including 30 crafted assembly
test cases for control-flow and pointer sanitization vul-
nerabilities, along with 13 additional Sancus unit-test
enclaves written in C. Furthermore, we demonstrate that
Pandora autonomously reproduces over 6 subtle vulnera-
bilities previously identified through painstaking manual
analysis [29], including critical issues in various versions
of Sancus’s compiler runtime [20], [21], applications [22],
and derived architectures [16].

More broadly, our work establishes a foundation for
the automated validation of enclave software across het-
erogeneous architectures and outlines future directions
on interruptibility, real-time guarantees, and extensions to
alternative MSP430 TEEs [5], [14], [15], [23], [26].

Contributions. In summary, our main contributions are:
• We design a hardware abstraction layer to support

architecture-agnostic, truthful symbolic execution
of enclaves across heterogeneous TEEs.

• We accurately implement hardware semantics and
symbolic enclave loading for the Sancus research
TEE on low-end MSP430 microcontrollers.



• We evaluate our port through extensive unit tests
and autonomous reproduction of vulnerabilities
across Sancus applications and compiler runtimes.

Open Science. To ensure reproducibility and encourage
future research, all our modifications to Pandora, along
with our evaluation enclaves, have been merged into
the upstream Pandora open-source repository available at
https://github.com/pandora-tee/.

2. Background and Related Work

TEEs. Hardware-based trusted execution environments
enhance processors with primitives for isolation and at-
testation of critical code and data [10]. Recent years
have seen the emergence of various architectures that
implement TEE protection at different isolation granular-
ities. Cloud-based TEEs, such as AMD SEV and Intel
TDX, provide coarse-grained isolation for entire virtual
machines, while enclave-based TEEs, like Intel SGX, offer
fine-grained protection within the same address space.
In the latter design, hardware-isolated enclave regions
are embedded within an untrusted host’s address space.
Although attackers can address enclave memory, the CPU
ensures it remains inaccessible to all code outside the pro-
tected region. When the CPU executes within the enclave,
on the other hand, access is granted to the entire address
space, enabling efficient access to input and output buffers
but potentially exposing enclave software to confused-
deputy pointer vulnerabilities [29].

Sancus. The mature Sancus [20], [21] TEE research pro-
totype extends the openMSP430 softcore, a small micro-
processor with a flat 16-bit single address space, designed
for embedded devices like pacemakers and sensor nodes.
Sancus enclaves consist of a contiguous, read-only code
section and a single data section for secrets. A lightweight
hardware memory access-control mechanism ensures that
an enclave’s data section is only accessible when exe-
cuting within the corresponding text section. To simplify
secure enclave development, Sancus provides a modified
LLVM C compiler that automates low-level tasks such
as maintaining a secure call stack and handling enclave
entry and exit. Carefully crafted entry and exit stubs are
automatically inserted into binaries, making them critical
to Sancus’s security: any flaw in these stubs affects all
enclaves built with the toolchain [29].

Since its original release over a decade ago, the Sancus
TEE research prototype has been maintained as an active
open-source project, driving numerous embedded appli-
cations and extensions [3], [6], [7], [16], [20], [22], [24],
[28], [30] and inspiring similar low-end single-address-
space enclave architectures [8], [13], [14], [18], [23].

Pandora. Pandora [1] is an open-source extensible vali-
dation framework built on top of the popular angr [25]
library. In contrast to other SGX validation tools [4], [9],
[17], [31], Pandora explicitly aims for truthful symbolic
execution, where the hardware is mimicked as close as
possible, allowing to meticulously validate low-level en-
clave runtime entry/exit behavior and initialization logic.
Pandora extends angr’s functionalities with accurate se-
mantics for SGX-specific instructions, an enclave-aware
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Figure 1. Overview of our main changes to the Pandora software
architecture. Newly added components are highlighted in green (bold)
and modified components are in yellow (italics).

symbolic memory model, and powerful techniques such
as taint tracking of attacker inputs.

Pandora features an extensible, plugin-based design
for vulnerability detection, where individual plugins im-
plement detection logic by enforcing high-level invari-
ants. These invariants are checked during the symbolic
exploration by subscribing to specific “breakpoints” ex-
posed by Pandora’s enclave-aware memory model. For
instance, Pandora’s ptrsan plugin transparently vali-
dates that all attacker-tainted memory addresses always
resolve outside the enclave, thereby ensuring the ab-
sence of evasive confused-deputy attacks [29]. Similarly,
cfsan excludes control-flow hijacking attacks by re-
stricting attacker-tainted jump targets to fall outside the
enclave, while abisan ensures that CPU registers are
properly initialized and cleared upon enclave entry and
exit. After symbolic exploration, Pandora generates de-
tailed human-readable HTML reports for each plugin,
including contextual information such as register states
and disassembly.

While Pandora can load and symbolically execute
any SGX enclave, regardless of its shielding runtime,
it remains tightly coupled to Intel SGX. Its codebase
depends on low-level SGX-specific details such as binary
format loading, memory layout structures (e.g., thread-
control structure), and SGX-specific x86 instructions.
Hence, symbolic validation of enclaves for other TEEs,
like Sancus, remains an open challenge.

3. Implementation

Our goal was to design an extensible TEE hardware
abstraction layer that exposes Pandora’s core symbolic-
execution infrastructure to support principled validation of
single-address-space enclaves across heterogeneous archi-
tectures, while preserving truthful semantics of low-level
TEE-specific hardware behavior.

We provide an overview of the main changes to Pan-
dora’s software architecture in Fig. 1. Our modifications
primarily focus on the binary loading subsystem and the
enclave-aware symbolic exploration components. Notably,
we did not need to modify the ptrsan and cfsan plu-
gins, which express high-level, architecture-independent

https://github.com/pandora-tee/


security invariants. We leave extension of the architecture-
dependent abisan plugin as future work

Enclave Loading. In Intel SGX, enclaves are included
as dynamically linked ELF libraries, whereas in Sancus,
one or more enclaves are directly embedded within the
entire firmware binary. Moreover, SGX employs a com-
plex multi-stage loading process [11] to create the en-
clave’s virtual address space, including hardware-managed
data structures. We found references to SGX-specific
data structures, such as the thread-control structure [11],
scattered throughout Pandora’s codebase. Therefore, we
refactored binary loading and encapsulated SGX-specific
behavior in an abstract base class. This modular design
simplifies extending Pandora with custom enclave loaders.

We implemented a SancusSDK enclave loader that
automatically detects MSP430 binaries and extracts en-
clave boundaries by detecting the custom ELF sections
for enclave text and data regions, added by the Sancus
compiler. SancusSDK also takes care to initialize the
symbolic CPU register state, setting the program counter
to the single enclave entry point at the start of the text sec-
tion and marking all other MSP430 registers as attacker-
tainted. A further important consideration is that in Intel
SGX an enclave has to be a contiguous area in virtual
memory, whereas a Sancus enclave can be split into two
separate regions in memory. Since Pandora’s original sym-
bolic memory model was limited to a single contiguous
enclave address range, we extended it to support multiple
contiguous regions, ensuring breakpoints trigger whenever
a symbolic pointer overlaps with any of these regions.

Instruction Hooks. We rely on the open-source angr-
platforms repository1 to lift standard MSP430 instruc-
tions to angr’s internal VEX intermediate representation.
However, since angr’s built-in Capstone disassembler
lacks MSP430 support, SancusSDK mitigates this by
externally invoking msp430-objdump to disassemble
the binary and parsing the output for inclusion in reports
and debugging. We furthermore transparently detect and
hook Sancus-specific instructions that are not part of the
standard MSP430 instruction set upon enclave loading.

Instruction hooks must accurately reflect the effects
of Sancus-specific instructions on the symbolic execution
state. Some instructions, like enable, are typically not
called within enclaves and can be safely treated as no-
ops. We implement disable by modifying the state to
halt execution of the current symbolic path. The verify
instruction, used for local attestation between multiple
enclaves, is skipped, as our Pandora port does not yet sup-
port multi-enclave linking (Section 5). This also allows to
statically return zero for get_id and get_caller_id,
indicating the enclave was invoked by untrusted code. The
wrap and unwrap instructions are partially implemented
by setting authenticated encryption/decryption results as
unconstrained symbolic values. Future work could explore
executing these cryptographic operations concretely using
a fixed or user-provided master key. Lastly, since our
Pandora port does not simulate interrupts, we treat clix
(interrupt-disable for x cycles [3]) as a no-op. However,
we accurately simulate exceptions for illegal nested clix

1. https://github.com/angr/angr-platforms

invocations, as they are used to trigger hardware excep-
tions in Sancus’s runtime ASSERT macros.

Enclave Exit. Unlike Intel SGX, where enclaves are
entered and exited via dedicated EENTER/EEXIT in-
structions, Sancus uses regular control flow instructions
like call or jmp for implicit transitions. Since Pandora
originally depended on explicit EEXIT hooks to manage
symbolic execution paths, we refactored the engine to
query architecture-specific classes, such as SancusSDK,
to identify enclave exit points. Upon detecting an exit,
Pandora’s symbolic explorer now uses angr’s stashing
mechanism to halt or re-enter execution paths as needed.

Hardware Exceptions. Pandora originally supported only
x86 page-level access control. We extended it to accurately
model Sancus’s fine-grained enclave memory protection
rules. Specifically, SancusSDK registers the enclave data
section as non-executable and sets extra breakpoints to
enforce read- and execute-only permissions on the text
section. This is crucial when executing Sancus compiler
entry/exit stubs (cf. Section 4.2), which may intentionally
write to the text section to trigger runtime exceptions and
abort execution upon detecting interface violations.

4. Evaluation

We evaluated our Pandora port using both handwritten
unit tests and existing applications and compiler runtimes
within the Sancus ecosystem. Although we did not un-
cover new vulnerabilities, our evaluation clearly shows
that Pandora can autonomously reproduce known vul-
nerabilities in existing Sancus applications and compiler
runtimes that have been manually discovered and patched
over the past decade.

4.1. Unit Test Framework

To validate expected behavior and refine our Sancus-
specific symbolic execution engine, we developed an ex-
tensive unit-test framework. This includes 30 hand-crafted
assembly test cases for control-flow and pointer sanitiza-
tion vulnerabilities, as well as 13 additional Sancus unit-
test enclaves written in C. The latter assess Pandora’s han-
dling of complete application enclaves, including complex
compiler-generated runtime stubs, while the handcrafted
assembly tests allow for precise modeling of specific
vulnerabilities without compiler-induced overhead.

Appendix A details the Sancus unit tests for Pandora’s
cfsan and ptrsan vulnerability-detection plugins.

4.2. Compiler Runtime Entry and Exit Stubs

Validating compiler-generated enclaves is an essential
goal. The critical entry and exit stubs inserted into every
enclave consist of carefully crafted, hand-written assembly
code that is a prime target for attackers and prone to
subtle sanitization oversights. Figure 2 shows the increas-
ing size and complexity of these stubs across Sancus
versions, reflecting trends seen in Intel SGX shielding
runtimes [27]. Previous research [29] identified numerous
control-flow hijacking and pointer validation vulnerabili-
ties in earlier Sancus stub versions. We ran Pandora on a

https://github.com/angr/angr-platforms
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Figure 2. Growth of Sancus enclave runtime stubs in lines of code.

test C enclave across all stub versions and confirmed that
it autonomously rediscovered all issues (cf. Table 1).

Reproduced Issues. The cfsan plugin flagged a critical
issue as a symbolic unconstrained tainted jump target,
indicating control-flow hijacking to any address within or
outside the enclave across the entire 16-bit address space,
confirming previous findings [29]. Indeed, the HTML
report (see Fig. 5 in Appendix C) correctly shows that no
constraints are placed on the r7 register, which stores the
continuation address for enclave exit. Since the stub does
not verify if this address belongs to the caller, an attacker
can trick the enclave into jumping to any address, even
within the enclave itself.

Both the cfsan warning and the ptrsan critical
issue originated from the __sm_ret_entry stub. This
stub was previously reported [29] to suffer from a vul-
nerability where an enclave could be forced to “return”
from a callback that was never executed, causing the
enclave to pop under the stack and load incorrect values
into registers. The HTML reports (see Figs. 4 and 7 in
Appendix C) indicate that the final ret instruction would
return to address 0x0, which is indeed the initialized value
of enclave memory. The cfsan warning correctly flagged
this as a concrete return target in non-executable memory,
while ptrsan further detected a non-tainted read outside
enclave memory at address 0x0.

Remaining Warnings. In the latest stub version v2.1.0,
two ptrsan warnings remain due to an attacker-tainted
pointer dereference in the enclave’s logical entry-point
jump table (__sm_table). This is expected behavior, as
the index value in r6 is indeed attacker-controlled. How-
ever, Pandora downgraded this issue to a warning, as it
autonomously determined that the attacker-provided index
is properly constrained within the jump table bounds.

4.3. Sancus Applications and Libraries

The issues discovered in previous research [29] were
not limited to Sancus’s compiler stubs, but also span
different applications and support libraries.

4.3.1. Authentic Execution. A first vulnerability was
previously found in a Sancus extension [22], [24] designed
for authenticated event-driven IoT applications. The en-
clave transparently decrypts and authenticates encrypted
payloads while copying them inside. However, Pandora

TABLE 1. REPORTED ISSUES ACROSS SANCUS STUB VERSIONS.

cfsan ptrsan

Version # warning # critical # warning # critical

1.0.0 1 1 2 1
2.0.0 1 1 2 1
2.1.0 0 0 2 0

correctly detected that the payload input buffer pointer
was not sanitized. Listing 5 in Appendix B shows the
vulnerable code where sancus_unwrap_with_key is
called with an unsanitized payload argument on line 12.
This function internally uses the aforementioned unwrap
Sancus hardware instruction to decrypt the payload and
writes it into the trusted input_buffer inside the en-
clave. Pandora successfully detected unconstrained reads
and writes inside the enclave, autonomously identifying
the vulnerability reported in prior work [29].

4.3.2. Soteria Loader Enclave. Another vulnerability
was discovered in a trusted loader enclave [16] devel-
oped for supporting lightweight code confidentiality and
integrity. The vulnerable enclave is included in Listing 6
in Appendix B, with the vulnerability arising in lines 3
through 6. The untrusted context passes an enclave layout
struct to this enclave which is then immediately accessed
inside sm_loader_load. This function does not exe-
cute any bounds checking on the values fetched from this
struct. Pandora was able to discover these vulnerabilities
indicating four unique critical unconstrained read issues.
Manual inspection confirmed that these issues indeed stem
from the unsanitized accesses to the attacker-controlled
SancusModule argument exploited in prior work [29].

4.3.3. Insufficient Bounds Checks. A final, particularly
subtle vulnerability was found in the Sancus support li-
brary function, explicitly designed to ease interface san-
itization of untrusted pointers. Listing 7 in Appendix B
shows an enclave using this function. The vulnerable C
macro sancus_is_outside_sm on Lines 1 to 6, aims
to check if an entire buffer lies outside the enclave, but
it only verifies the buffer’s endpoints. This allows a large
buffer that spans beyond the enclave’s boundaries to incor-
rectly pass the check. Additionally, the function may also
fail if the attacker-controlled buffer’s length causes the
address calculation to overflow and silently wrap around
the address space. This highlights the complexities of
correctly validating enclave software interfaces and the
need for automated validation tools.

The ptrsan plugin, relying on Pandora’s powerful
symbolic enclave memory model and taint-tracking mech-
anism, fully autonomously reproduced this issue, which
was previously reported through manual analysis in prior
work [29]. Pandora also confirmed that this issue was
correctly resolved in later Sancus support library versions.

5. Discussion and Future Work

Our Pandora port establishes a foundation for the au-
tomated validation of enclave software on low-end TEEs.
In this section, we discuss limitations and opportunities
for future work.



Validating Enclave Interactions. Both Intel SGX and
Sancus support multiple enclaves. An important note here
is that Intel SGX enclaves are completely isolated from
each other. This is not necessarily the case for Sancus
where enclaves can securely link with and call each other.
However, our current Pandora port only validates single
enclaves in isolation. When Pandora encounters binaries
with multiple enclaves, it will default to the first enclave
in the address space. For entirely isolated enclaves this is
no problem but for enclaves that depend on other enclave
code modules this may be a limitation. An interesting
future research direction could extend Pandora to validate
the secure linking and local attestation process of complex
binaries with multiple interacting Sancus enclaves.

ABI Validation. A limitation of our current Pandora port
is that the abisan plugin has not yet been adapted
for the Sancus-MSP430 architecture. Unlike the main
ptrsan and cfsan plugins, which enforce high-level,
architecture-independent invariants, abisan operates at
the lower level of CPU registers and is therefore in-
trinsically architecture-dependent. Consequently, abisan
needs to be ported to ensure that MSP430 control and
data registers are properly initialized and cleansed upon
enclave entry and exit [5], [6].

Incomplete Instruction Hooks. A minor limitation is
that not all hooks for Sancus instructions are entirely im-
plemented. When encountering such instructions, Pandora
may no longer adhere to the principle of truthful symbolic
execution depending on the specific instruction. However,
this is not a major limitation, as our existing base im-
plementation of Sancus hooks can be easily extended to
model additional behavior as needed.

Symbolic Execution Limitations. As this work is an
extension of Pandora, it also inherits its limitations. This
means that incomplete code coverage can be a side effect
when encountering the path explosion phenomenon. This
is however less of an issue for smaller embedded Sancus
enclaves than for Intel SGX enclaves. Moreover, angr
in itself is not guaranteed to be sound. Another limi-
tation inherited from Pandora arises when encountering
encrypted code. This can be overcome when provided
with the decryption key but this is not the main goal of
Pandora, as the developer can always run Pandora on the
non-encrypted binary.

Heterogenous TEEs. Our adaptation of Pandora with an
extensible hardware abstraction layer and our MSP430-
based Sancus implementation opens the possibility for
further TEE extensions. One promising direction could
target the validation of hard real-time guarantees, for
instance of the Aion [3] architecture which extends Sancus
with enclave interruptibility and availability guarantees.
However, possible future directions are not limited to
Sancus only. As this work has done essential efforts
in supporting truthful symbolic execution of embedded
MSP430 programs, future developments could aim to
support other enclave architectures developed on top of
the MSP430 architecture, such as VRASED [14], [23] and
SMART [15]. Especially for VRASED’s remote attesta-
tion process, which is formally verified, would provide

interesting results as research already indicated that gaps
between formal models and its real-world implementation
might exist, including insufficient interface validation in
unverified glue code stubs [6].

6. Conclusion

Trusted execution environments have seen consider-
able developments in recent years. Among these devel-
opments, the ecosystem for many TEE architectures has
been widely extended. Although TEEs provide strong,
hardware-based isolation guarantees, developing secure
enclave software remains challenging. While considerable
research has been directed towards enclave software au-
diting and the development of automated validation tech-
niques, virtually all of this work has focused exclusively
on high-end TEE architectures like Intel SGX, neglecting
low-end embedded TEEs. This work bridges that gap by
extending Pandora, a mature open-source tool for validat-
ing SGX enclaves, to the Sancus research architecture for
low-end enclaves on 16-bit microcontrollers.
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Appendix A.
Unit Test Details

Our Pandora port includes an extensive unit test frame-
work, including 15 and 15 crafted assembly test cases
for control-flow and pointer sanitization vulnerabilities
respectively, along with 13 additional Sancus unit-test
enclaves written in C. We detail the tests for Pandora’s
cfsan and ptrsan vulnerability-detection plugins be-
low, discussing elementary assembly enclaves that give a
more intricate insight into the vulnerabilities discoverable
with Pandora.

A.1. Control-Flow Sanitization Tests

One of the checks done by the cfsan plugin ensures
that an enclave does not jump to an attacker tainted
address that is not restricted to either the inside or the
outside of the enclave. Listing 1 is an example of such a
vulnerable enclave. The br instruction results in a jump
to the provided address. The enclave will thus jump to
r15. As there are no constraints imposed on the value
of register r15, this will result in a jump to an attacker
provided address. The cfsan plugin reports this as a
critical issue: Symbolic unconstrained tainted jmp target.

Listing 2 illustrates an example of a jump constrained
within the enclave. The example uses absolute addresses,
although relative addresses (using labels) could be used
as well. A subtlety in the cfsan plugin is that it always
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overapproximates the target instruction to be six bytes
long, as this is the maximum length of an MSP430 in-
struction. This approach avoids the need to compute the
size of the target instruction for each jump. The absolute
addresses can be obtained with the help of the object dump
tool. On line 4 the address 0x6c1a, an address inside the
enclave, is compared against the register r15, using the
cmp instruction. All paths that assume r15 lower than this
address will leave the enclave, with the jl instruction.
The remaining paths will compare the register r15 to
value 0x6c1e which is also an address inside the enclave.
Similarly, all paths that assume r15 greater than or equal
to this address will leave the enclave (with instruction
jge). The remaining paths will thus have r15 constrained
to values between 0x6c1a and 0x6c1e. Next the br
instruction will jump to the address inside r15. This
jump is thus constrained inside the enclave itself as all
paths that assumed r15 to be lower or greater than these
addresses have left the enclave. This will be reported by
the cfsan plugin as a warning: Symbolic jmp tainted
target in enclave memory.

For the cfsan plugin in total 15 assembly test cases
were written of which 8 cases test normal enclave behavior
(so without reports generated by the cfsan plugin). The
other cases test specific vulnerabilities detectable with the
cfsan plugin. For all cases the cfsan plugin behaves
as expected.

1 .text
2 __sm_foo_public_start:
3 enter_foo:
4 br r15
5

6 __sm_foo_public_end:
7 ret
8

9 .data
10 __sm_foo_secret_start:
11 __sm_foo_secret_end:

Listing 1. An enclave jumping to an attacker provided address.

1 .text
2 __sm_foo_public_start:
3 enter_foo:
4 cmp #0x6c1a, r15
5 jl end
6

7 cmp #0x6c1e, r15
8 jge end
9

10 br r15
11

12 nop ;Address 0x6c1a
13 nop
14 nop ;Address 0x6c1e
15 nop
16 jmp __sm_foo_public_end
17

18 __sm_foo_public_end:
19 end:
20 ret
21

22 .data
23 __sm_foo_secret_start:
24 __sm_foo_secret_end:

Listing 2. An enclave jumps to an attacker tainted address constrained
to the inside of the enclave.

A.2. Pointer Sanitization Tests

The ptrsan plugin checks invariants for every mem-
ory read and write. Listing 3 gives an example of a write
to a non-attacker-tainted target address. On line 4 the
address 0x1000, an address outside the enclave, will be
put in r15. The mov instruction can move values between
registers and memory locations. Then on line 5 the value
of 0x1 will be written to the address inside r15. As this
address lies outside the enclave, a critical issue will be
generated: Non-tainted write outside enclave.

Listing 4 presents an instance of an enclave that reads
an attacker tainted address inside the enclave. This exam-
ple acts in a similar way as Listing 2 where the attacker-
tainted value inside r15 will first be constrained to lie
within the address range of the enclave. On line 10, the
value at the address stored in register r15 will be moved
to the register r14. This will be reported as a critical
issue: Unconstrained read.

1 .text
2 __sm_foo_public_start:
3 enter_foo:
4 mov #0x1000, r15
5 mov #0x1, @r15
6 nop
7 nop
8 nop
9 jmp __sm_foo_public_end

10

11 __sm_foo_public_end:
12 ret
13

14 .data
15 __sm_foo_secret_start:
16 .space 64
17 __sm_foo_secret_end:

Listing 3. An enclave writing to a non-tainted address that may lie
outside the enclave.

1 .text
2 __sm_foo_public_start:
3 enter_foo:
4 cmp #0x6c0c, r15
5 jl end
6

7 cmp #0x6c24, r15
8 jge end
9

10 mov @r15, r14
11 jmp end
12

13 __sm_foo_public_end:
14 end:
15 ret
16

17 .data
18 __sm_foo_secret_start:
19 __sm_foo_secret_end:

Listing 4. An enclave reading an attacker tainted address inside the
enclave.

For the ptrsan plugin in total 15 assembly test
cases have been developed of which 4 test the normal
enclave behavior. The remaining 11 cases test specific
vulnerabilities detectable with the ptrsan plugin. For
all these test cases the ptrsan reported vulnerabilities
as expected.



Appendix B.
Autonomously Reproduced Issues

In what follows, the vulnerable code snippets from
earlier manual research “A Tale of Two Worlds” [29] are
shown. Section 4.3 gives an in depth explanation of all
the vulnerabilities throughout the entire Sancus ecosystem
that were discovered in this research.

1 void SM_ENTRY(basic_enclave) __sm_handle_input(
uint16_t conn_id,

2 const void* payload, size_t len)
3 {
4 if (conn_id >= SM_NUM_INPUTS)
5 return;
6

7 const size_t data_len = len - AD_SIZE -
SANCUS_TAG_SIZE;

8 const uint8_t* cipher = (uint8_t*)payload +
AD_SIZE;

9 const uint8_t* tag = cipher + data_len;
10

11 uint8_t* input_buffer = alloca(data_len);
12 if (sancus_unwrap_with_key(__sm_io_keys[

conn_id], payload, AD_SIZE,
13 cipher, data_len,

tag, input_buffer))
14 {
15 __sm_input_callbacks[conn_id](

input_buffer, data_len);
16 }
17 }

Listing 5. The vulnerable code that decrypts an unsanitized payload.

1 int SM_ENTRY(sm_loader) sm_loader_load(struct
SancusModule *scm)

2 {
3 size_t pstart = (size_t)scm->public_start;
4 size_t pend = (size_t)scm->public_end;
5 size_t pcstart = (size_t)scm->public_start;
6 size_t pcend = (size_t)scm->public_end;
7 size_t i;
8 int ret;
9

10 // check boundaries
11 if (pend < pstart pcend < pcstart)
12 return 0;
13

14 // check sizes
15 if ((pend - pstart) != (pcend - pcstart))
16 return 0;
17

18 //...
19 }

Listing 6. The vulnerable Soteria loader enclave.

1 #define __OUTSIDE_SM( p, sm ) \
2 ( ((void*) p < (void*) &__PS(sm)) ((void*)

p >= (void*) &__PE(sm)) ) && \
3 ( ((void*) p < (void*) &__SS(sm)) ((void*)

p >= (void*) &__SE(sm)) )
4

5 #define sancus_is_outside_sm_vulnerable(sm, p,
len) \

6 ( __OUTSIDE_SM(p, sm) && __OUTSIDE_SM((p+len
-1), sm) )

7

8 void SM_ENTRY(basic_enclave)
copy_data_from_buffer(int *buffer, int
length)

9 {
10 //vulnerable function
11 if (!sancus_is_outside_sm_vulnerable(

basic_enclave, buffer, length*2)) return;

12

13 for (int i = 0; i < length; i++)
14 {
15 //access the data
16 int result = buffer[i];
17 }
18 return;
19 }

Listing 7. An enclave checks arguments with the vulnerable
sancus_is_outside_sm.

Appendix C.
Generated Reports for Sancus Stubs v2.0.0

This appendix contains the complete cfsan and
ptrsan reports generated for the Sancus entry and exit
stub version 2.0.0. Figures 3 to 5 depict the report for the
cfsan plugin and Figures 6 to 7 contain the report for
the ptrsan plugin.



Report
ControlFlowSanitizationPlugin

Plugin description: Detects attacker-controlled jump targets.

Analyzed 'main.elf', with 'Sancus' enclave runtime. Ran for 0:00:03.088532 on 2024-06-01_19-03-28.

Report summary

Severity Reported issues

WARNING Concrete ret target in non-executable memory at 0x6d34

CRITICAL Symbolic unconstrainted tainted jmp target at 0x6cde

Report details (click to uncollapse)

DEBUG INFO WARNING ERROR CRITICAL

 Enclave info: Address range is [Text: 0x6c64, 0x6d8d; Data: 0x200, 0x32b]

 Summary: Found 1 unique WARNING issue; 1 unique CRITICAL issue.

 Issues reported at 0x6d34 1  __sm_basic_enclave_ret_entry  WARNING

Concrete ret target in non-executable memory

 Concrete ret target in non-executable memory WARNING

IP=0x6d34

Plugin extra info

Key Value

Target 0

Attacker tainted False

Symbolic False

Target range [0x0, 0x0]

Figure 3. The cfsan report for the Sancus stubs v2.0.0 (page 1/3).



Key Value

Target entirely inside enclave False

Execution state info

    6d24: 3b 41       pop r11
    6d26: 3a 41       pop r10
    6d28: 39 41       pop r9
    6d2a: 35 41       pop r5
    6d2c: 34 41       pop r4
    6d2e: 38 41       pop r8
    6d30: 37 41       pop r7
    6d32: 36 41       pop r6
    6d34: 30 41       ret

 pc       : 0x6d24
 sp       : 0x312
*       sr       : <BV16 (((((sr_attacker_2_16{UNINITIALIZED} & 

0xfffd | 0x2) & 0xfefa | 0x1) & 0xfef8 | (0#15 .. (if 
r6_attacker_6_16{UNINITIALIZED} - 0xffff == 0x0 then 1 else 0)) << 0x1) & 
0xfffb | (0x1 & LShR(r6_attacker_6_16{UNINITIALIZED} - 0xffff, 0xf)) << 0x2) 
...

*       zero     : <BV16 zero_attacker_3_16{UNINITIALIZED}>
 r4       : 0x0
 r5       : 0x0
 r6       : 0x0
 r7       : 0x0
 r8       : 0x0
 r9       : 0x0
 r10      : 0x0
 r11      : 0x0
*       r12      : <BV16 r12_attacker_12_16{UNINITIALIZED}>
*       r13      : <BV16 r13_attacker_13_16{UNINITIALIZED}>
*       r14      : <BV16 r14_attacker_14_16{UNINITIALIZED}>
*       r15      : <BV16 r15_attacker_15_16{UNINITIALIZED}>

Backtrace

Constraints

Disassembly

CPU registers

Disassembly of jump target (not executed)

Attacker constraints

 Issues reported at 0x6cde 1  __sm_basic_enclave_entry  CRITICAL

Symbolic unconstrainted tainted jmp target

Basic block trace (most recent first) - Length: 7

Figure 4. The cfsan report for the Sancus stubs v2.0.0 (page 2/3).



 Symbolic unconstrainted tainted jmp target CRITICAL  IP=0x6cde

Plugin extra info

Key Value

Target <BV16 r7_attacker_7_16{UNINITIALIZED}>

Attacker tainted True

Symbolic True

Target range [0x0, 0xffff]

Target entirely inside enclave False

Execution state info

    6cd8: 82 41 02 03 mov r1, &0x0302
    6cdc: 36 43       mov #-1, r6 ;r3 As==11
    6cde: 00 47       br r7

 pc       : 0x6cd8
 sp       : 0x300
*       sr       : <BV16 ((0 .. sr_attacker_2_16{UNINITIALIZED}

[14:9] .. 0 .. sr_attacker_2_16{UNINITIALIZED}[7:3] .. 0) & 0xfff8 | 0x2) & 
0xfffa | 0x1>

*       zero     : <BV16 zero_attacker_3_16{UNINITIALIZED}>
*       r4       : <BV16 r4_attacker_4_16{UNINITIALIZED}>
*       r5       : <BV16 r5_attacker_5_16{UNINITIALIZED}>
 r6       : 0xffff
*       r7       : <BV16 r7_attacker_7_16{UNINITIALIZED}>
*       r8       : <BV16 r8_attacker_8_16{UNINITIALIZED}>
*       r9       : <BV16 r9_attacker_9_16{UNINITIALIZED}>
*       r10      : <BV16 r10_attacker_10_16{UNINITIALIZED}>
*       r11      : <BV16 r11_attacker_11_16{UNINITIALIZED}>
 r12      : 0x0
 r13      : 0x0
 r14      : 0x0
 r15      : 0x1

Backtrace

Constraints

Disassembly

CPU registers

Basic block trace (most recent first) - Length: 14

Attacker constraints

Figure 5. The cfsan report for the Sancus stubs v2.0.0 (page 3/3).



Report
PointerSanitizationPlugin

Plugin description: Validates attacker-tainted pointer dereferences.

Analyzed 'main.elf', with 'Sancus' enclave runtime. Ran for 0:00:03.088532 on 2024-06-01_19-03-

28.

Report summary

Severity Reported issues

WARNING Attacker tainted read inside enclave at 0x6caa

Attacker tainted read inside enclave at 0x6cc0

CRITICAL Non-tainted read outside enclave at 0x6d34

Report details (click to uncollapse)

DEBUG INFO WARNING ERROR CRITICAL


Enclave info: Address range is [Text: 0x6c64, 0x6d8d; Data: 0x200,

0x32b]

 Summary: Found 2 unique WARNING issues; 1 unique CRITICAL issue.

 Issues reported at 0x6caa 1  __sm_basic_enclave_entry

WARNING  Attacker tainted read inside enclave

 Issues reported at 0x6d34 1  __sm_basic_enclave_ret_entry

CRITICAL  Non-tainted read outside enclave

 Non-tainted read outside enclave CRITICAL  IP=0x6d34

Plugin extra info

Key Value

Address <BV64 0x0>

Attacker tainted False

Figure 6. The ptrsan report for the Sancus stubs v2.0.0 (page 1/2).



Key Value

Length 6

Pointer range [0x0, 0x0]

Pointer can wrap address space False

Pointer can lie in enclave False

Execution state info

    6d24: 3b 41       pop r11
    6d26: 3a 41       pop r10
    6d28: 39 41       pop r9
    6d2a: 35 41       pop r5
    6d2c: 34 41       pop r4
    6d2e: 38 41       pop r8
    6d30: 37 41       pop r7
    6d32: 36 41       pop r6
    6d34: 30 41       ret

Backtrace

0x6d24 <__sm_basic_enclave_ret_entry> (0x6d24 relative to obj base)
0x6c8c <__sm_basic_enclave_entry>   (0x6c8c relative to obj base)
0x6c86 <__sm_basic_enclave_entry>   (0x6c86 relative to obj base)
0x6c78 <__sm_basic_enclave_entry>   (0x6c78 relative to obj base)
0x6c76 <__sm_basic_enclave_entry>   (0x6c76 relative to obj base)
0x6c70 <__sm_basic_enclave_entry>   (0x6c70 relative to obj base)
0x6c64 <__sm_basic_enclave_entry>   (0x6c64 relative to obj base)

Constraints

Disassembly

CPU registers

Basic block trace (most recent first) - Length: 7

Attacker constraints

 Issues reported at 0x6cc0 1  __sm_basic_enclave_entry

WARNING  Attacker tainted read inside enclave

Figure 7. The ptrsan report for the Sancus stubs v2.0.0 (page 2/2).
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