
Enclave Application Cache for RISC-V Keystone

Takumu Umezawa
Waseda University

Akihiro Saiki
Waseda University

Keiji Kimura
Waseda University

Abstract—The development of the IoT society and the spread
of cloud computing have also increased the number of
insecure devices and vulnerable host OSs. We must protect
the applications that deal with sensitive information, even
from untrusted OSs. Trusted execution environment (TEE)
technologies have attracted much attention because they
enable an isolated, secure program execution environment
from OSs. However, the booting phase of application exe-
cution in a TEE requires an expensive hash calculation in
the measurement process for its executable binary image
to guarantee its integrity. To mitigate this overhead, this
paper proposes an enclave application cache mechanism for
RISC-V Keystone, a representative RISC-V TEE. It bypasses
the measurement process by storing the previously executed
binary image in a secure memory space. The performance
evaluation shows the proposed cache can achieve a 6–40×
speedup in a TEE application’s execution time.

1. Introduction

Various large and small computer systems surround
us throughout our society, from edge devices to cloud
computing nodes. This situation has also increased the
risks of introducing thoughtlessly mismanaged computers
and vulnerable OSs. Attackers try to steal and break our
sensitive information by using these vulnerable systems
as footholds. The importance of security technologies to
protect computer systems is increasing.

Trusted Execution Environment (TEE) is one of the
most representative security technologies. It executes ap-
plications in a secure execution environment isolated from
other software, including OSs. While various CPUs have
provided their own TEE technologies [1], [4], [6], [8],
[9], [12], [13], RISC-V keystone has been proposed as an
open-source TEE framework [6]. This enclave-type TEE
provides a securely isolated execution environment for
each enclave application (eapp), same as Intel SGX and
ARM OP-TEE [2], [9].

Before executing an eapp, the Keystone system per-
forms a measurement process, including calculating the
hash value of the extracted application memory image, to
ensure its identity. While the hash calculation can attest
to the eapp memory image’s integrity and safety, it poses
a long latency before the application starts [3], [14]. This
could become a serious problem when an eapp is used in
a server application or a serverless service [7]. When the
server invokes an eapp at each query arrival time to keep
the program organization simple and ensure independence
from other queries, it causes an expensive hash calculation
for every query. Besides, a Keystone eapp’s memory
image tends to become large since Keystone requires

statically linked binary, and an enclave also contains its
runtime, resulting in a long hash calculation time.

To overcome this problem, several works have been
proposed for RISC-V platforms: One introduced a hash
calculation hardware accelerator [14]. Another proposed a
separate eapp binary loading mechanism that allows a user
to create a special enclave and load applications into it in
advance (Shadow Enclave) with measurement to quickly
launch its instance at the invocation time [3].

This paper proposes an enclave application cache
mechanism for RISC-V Keystone. It keeps eapp memory
images and their hash values in a secure memory area once
they are executed. When one of the same applications
is invoked again, the system builds a new enclave by
copying the previously kept memory image to the enclave
without its measurements. Unlike the Shadow Enclave,
which requires the user’s explicit operation, the system
automatically processes it. The main contributions of this
paper can be summarized as follows: (1) We propose
an enclave application cache for RISC-V, which reduces
the eapp startup time without the user’s intervention. (2)
We analyze the security of the proposed mechanism and
confirm that it keeps the same level of security as the
original Keystone. (3) We evaluate the performance of
the proposed cache mechanism and reveal that it can
accelerate the eapp execution time 6–40× compared to
the original Keystone implementation.

The remaining part of this paper is organized as fol-
lows: Section 2 and Section 3 review the related works and
Keystone architecture, respectively. Section 4 evaluates
the overhead of the eapp startup. Section 5 explains the
proposed enclave cache architecture. Section 6 assesses
the security risk of the proposed enclave cache, and then
Section 7 conducts its experimental evaluation.

2. Related Works

Hoang et al. proposed a Keystone-compatible RISC-V
system with hardware accelerators for hash computation
and digital signature algorithms [14]. Most security al-
gorithms run on software, but hardware implementation
can improve the computational speed. The Enclave cache
method is software-based and can be used with a hardware
accelerator.

Penglai Enclave is a TEE implementation for RISC-V
[3]. It has a feature to create another type of enclave called
“Shadow Enclave”. Shadow Enclave is a non-executable
enclave. Its memory map validation and hash calculation
for attestation are processed before execution. When it is
created, the user is returned an Enclave ID. By specifying
this ID, the user can create and launch an enclave instance
based on the contents in the Shadow Enclave. Since



Figure 1. Enclave, Unstrusted Region, and Security Monitor in Keystone
[6].

the Shadow Enclave’s memory map has already been
measured, creating an enclave instance does not require
it, allowing for a faster enclave launch. Shadow Enclave
requires the user’s explicit operations on its creation and
the eapp execution using it. Cerberus introduces a similar
approach as Penglai’s Shadow Enclave [5].

3. RISC-V Keystone

This section reviews RISC-V Keystone, particularly
regarding RISC-V’s privilege levels, memory protection
function (PMP), and Enclave.

3.1. RISC-V Privilege Levels

RISC-V has three privilege levels, each with a cor-
responding execution mode: machine-mode (M-mode),
supervisor-mode (S-mode), and user-mode (U-mode) [15].
M-mode has the highest privilege level and controls all
physical resources and interrupts. S-mode has the second-
highest privilege level and is used for the OS kernel,
including device drivers and kernel modules. U-mode has
the lowest privilege level and is used for general user
processes.

3.2. Keystone Architecture

Fig. 1 depicts an overview of Keystone architecture.
In Keystone, an enclave is a basic unit of an isolated
program execution environment. It comprises an enclave
application (eapp) and the runtime (RT). Each of them is
executed in U-mode and S-mode, respectively. Untrusted
applications and OS in the Untrusted Region are also
executed in U-mode and S-mode, respectively. However,
as explained in the next subsection, the memory areas for
the Untrusted Region and enclaves are separated. These
regions use shared memory to exchange information. M-
mode executes a Security Monitor (SM) that manages
the creation, execution, and destruction of enclaves. It
also keeps metadata, including information such as each
enclave’s address, size, and the hash value used for the
attestation.

3.3. Physical Memory Protection (PMP)

Keystone uses the Physical Memory Protection (PMP)
defined by the ISA specification for RISC-V [15] to create
an isolated memory region for an enclave. PMP controls

the access rights, such as reading, writing, and executing,
of the specific physical memory regions for U-mode and
S-mode via PMP entries attached to each RISC-V core in
a system.

PMP entries are statically prioritized. The correspond-
ing PMP entries check every memory access issued by a
RISC-V core. The PMP entry with the highest priority,
which matches any accessed bytes, determines whether
access is allowed or denied. The access rights of the mem-
ory region defined at the higher-priority entries override
those at the lower-priority entries.

Keystone configures the highest priority PMP entry
for the SM’s memory region at the system boot time.
In contrast, it configures the lowest priority PMP entry
to cover all memory regions with full access permissions
(OS PMP entry). Thus, the OS can have access permission
to all regions not protected by other PMP entries. At
the enclave startup time, the OS allocates the appropriate
contiguous memory region for the created enclave. Then,
the OS passes the allocated memory region to the SM to
configure a PMP entry to protect it from the OS [6].

When a CPU core switches its context to an enclave,
the SM configures the PMP entry so that the relevant
enclave memory region is fully accessible. Simultane-
ously, the SM disables all access permissions in the OS
PMP entry to prevent the enclave from accessing other
memory regions. Then, when a CPU core switches to
something other than the enclave, the SM disables the
access permissions for the enclave region and resumes the
OS PMP entry’s permission, allowing the OS’s ordinary
memory access. Thus, the Keystone can isolate an enclave
memory region from other enclaves and the OS.

3.4. Components of Keystone Enclave Applica-
tion File

An eapp executable file is a self-extracting file created
by Makeself [11]. As depicted in Fig. 2, the self-extracting
file consists of a TAR archive and a shell script. Further,
the TAR archive contains an eapp, an RT, a loader, and a
runner: The loader loads the RT into the enclave memory
region and creates page table entries (PTE). The RT loads
and executes the eapp and provides a small execution
environment, such as a proxy of syscalls for the host
OS. The runner, executed on the host OS, controls the
startup and execution of the eapp in cooperation with the
Keystone device driver and the SM.

3.5. Enclave Startup Process

This section explains the startup process of an eapp in
Keystone.

First, the runner file is executed, and the control is
transferred to the Keystone device driver. The Keystone
device driver calculates the required memory size based
on eapp, RT size, etc., and then allocates the necessary
memory from the Linux kernel based on this information.
The driver also obtains a shared memory region for ex-
changing information between the enclave and the OS.
Next, the OS copies the eapp, runtime, and loader file
images to the allocated enclave memory region. Finally,
the driver passes this memory information to the SM, and
the CPU control is switched to the SM.



Figure 2. Components of Keystone Executable file.

Figure 3. Deployment of Enclave in Main Memory at Its Startup.

Based on the information sent from the driver, the
SM creates metadata containing information such as the
address and size of the enclave’s memory region. Next,
the SM configures PMP entries for enclave and shared
memory regions as described in Section 3.3. It also mea-
sures the eapp and the runtime by calculating a hash value
for the attestation. The SM stores it in the metadata. As a
result of the process above, the eapp, RT, and the loader
are finally deployed in the isolated memory region, as
depicted in Fig. 3.

After the enclave creation, the SM can switch its
control to the eapp. At the first context switch, the loader
extracts the runtime memory map from its file image and
copies it to the enclave memory, and then the runtime
extracts the eapp memory map from its file image. Finally,
the eapp starts the execution.

4. Preliminarly Evaluation: Enclave Startup
Overhead

Here, we evaluate the enclave startup overhead and
the hash calculation overhead inside it to determine the

TABLE 1. SPECIFICATION OF HIFIVE UNMATCHED [10]

Core U74 S7
Number of Cores 4 1

L1I Cache 32KiB 16KiB
L1d Cache 32KiB N/A
L2 Cache 2MiB

Main Memory DDR4 16GiB
Clock Frequency 1.2GHz

Storage Samsung SSD 970 EVO Plus
250GB (MZ-V7S250BW)

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 20 40 60 80 100 120

En
cl

av
e 

st
ar

tu
p 

tim
e

as
 a

 p
er

ce
nt

ag
e 

of
 re

sp
on

se
 ti

m
e

Message Size [KiB]

1.22

1.31

1.61

2.08

Eapp Binary Size [MiB]

Figure 4. Evaluation Result of Enclave Startup Overhead.

expected performance improvement by the proposed en-
clave cache.

4.1. Evaluation Environment

We use SiFive’s Hifive Unmatched RISC-V multicore
platform [10] throughout the evaluation in this paper. It
has SiFive Freedom U740 SoC, composed of four SiFive
U74 cores and one SiFive S7 core, as shown in Table 1.
Each U74 core has a 32KiB L1D cache and a 32KiB L1I
cache, while the S7 core has a 16KiB L1I cache. The L2
cache is 2 MiB shared by all cores. Note that all programs
evaluated in this paper run on a U74 core. The operating
frequency is 1.2 GHz [10].

4.2. Evaluation Program

We made a digital signature server program for the
evaluation. The core module of the calculation is imple-
mented as an eapp containing a secret key. When the
program receives a query with a message, it executes the
eapp. The eapp then calculates a digital signature for the
message using ED25519, SHA3-512, and the secret key.
Finally, the eapp replies to the client with the calculated
signature.

We use the ED25519 and SHA3-512 implementations
included in the Keystone source tree. The program’s bi-
nary size can be changed to assess the impact of the
size on the hash calculation in the enclave measurement
process. We conducted the evaluations 10 times and used
the average value.

4.3. Evaluatoin Result

Fig. 4 shows the eapp startup overhead evaluation
result. The horizontal and vertical axes represent the input
message size and the ratio of the eapp startup time to the
eapp execution time, respectively. Note that the majority
of the startup overhead is hash calculation time.



The result shows that even the cases of 100KiB mes-
sage sizes spent over 85% of execution time. This result
shows we can reduce the eapp execution time by reducing
the hash calculation.

5. Proposed Enclave Cache Design

5.1. Enclave Cache Structure

The proposed enclave cache holds multiple eapp mem-
ory images in a PMP-secure space. It consists of the
memory image cache and the metadata cache, as depicted
in Fig. 5. The memory image cache is located in the
dedicated memory region separately allocated from the
SM. The metadata of the memory image cache and the
metadata cache are located in the SM.

The memory image cache is divided by 4KiB blocks,
each with an associated metadata. Each block holds a
4KiB block of an eapp memory image, and its associated
metadata holds a valid bit and an index of the next block.
The number of blocks is fixed in the current implementa-
tion.

The metadata cache consists of multiple entries: the
number of entries defines the maximum number of eapps
that can be held in the cache. Each entry holds the
Keystone enclave metadata, such as the eapp hash value,
size, etc. It also contains the index of the first memory
image cache block of that eapp and the key to check
whether the invoking eapp is in the cache.

We introduce an eapp’s digital signature, which con-
tains information about the eapp, as the enclave cache key.
This is provided along with the eapp’s execution file and
its public key in the current implementation. The signature
contains the provider’s ID, the application’s ID, RT’s ID,
the loader’s ID, and their version number. Thus, each eapp
image can have its unique signature. When an eapp is
updated, the SM can avoid executing an older one in the
cache and appropriately create an enclave for the newer
one.

Note that an entire eapp must be held in the cache. If
a part of the eapp must be loaded from the file system,
the measurement must be processed again since the binary
file may be falsified. Thus, if the eapp’s memory image
size exceeds the cache size, the cache cannot hold that
eapp.

5.2. Caching Eapp

When an eapp is invoked, its digital signature and
public key are sent to the SM. It validates the public
key with the root public key. If the public key is valid,
then the SM checks whether the eapp is in the cache by
checking the metadata cache using the digital signature
and the public key. If the eapp exists in the cache (cache
hit), a new enclave is created from the memory image held
in the cache, as described in the later section (Section 5.3).
Otherwise, the SM processes the cache miss procedure.

At the cache miss, the SM creates an enclave, same as
the normal enclave startup: extracting the file images of
the eapp, RT, and the loader from the Keystone executable
into the memory, memory protection by PMP, and hash
calculation as described in Section 3.5.

SM

Enclave 
Memory Image 
Cache Region

・・・

Enclave Metadata 
Cache 0

Other metadata

Index of first block
(Eapp0)

Enclave 
cache0-1

Enclave 
cache0-2

Enclave Metadata 
Cache 1

Other metadata

Index of first block
(Eapp1)

・・・

empty Enclave
Cache1-1

Metadata for Enclave Memory Image Cache Blocks

block0 block1 block2 block3 block n

Block0
metadata

Block1
metadata

valid
Next block

2

invalid ・・・

Enclave Metadata 
Cache m

Other metadata

Index of first block
(Eapp m)

invalid

Block n
metadata

Figure 5. Proposed Enclave Cache Structure.

SM

Enclave 
metadata

(1) Prepare metadata at 
enclave deployment time.

Hash value

Enclave metadata 
cache 

Size and other 
metadata

Hash value

(2) Set the enclave hash key and the 
index of the first enclave memory image 
cache block.

Index of the first 
enclave memory image 

cache block

Size and other
meta data

Enclave cache key

(3) Copy the hash value, 
size, and other metadata.

Figure 6. Setting metadata cache using the created enclave’s metadata
at the cache miss.

Then, the size of the created enclave is checked to
determine whether it is smaller than the cache size. If
it is larger than the cache, the enclave is not cached. If
the enclave size is smaller than the cache size and larger
than the cache’s free space, the SM invalidates one of the
cached enclaves to allocate sufficient free space. If the
total number of cached enclaves exceeds its limitation,
the SM also chooses one of them to be invalidated so
that the SM allocates the entry in the metadata cache for
the newly cached one. The SM uses LRU to choose the
invalidating enclave.

After that, the SM sets the enclave metadata, its digital
signature as the enclave cache key, and its first block in
the enclave cache in the metadata cache as depicted in
Fig. 6, and the newly created enclave’s memory image is
copied into the allocated blocks as depicted in Fig. 7. The
SM also sets the valid bit and the next block index in each
memory image cache block’s metadata. In Fig. 7, blocks
0, 1, and 3 are allocated for the newly cached eapp. These
blocks are validated by setting 1 for the valid bits in the
associated metadata. Also, the SM sets “1” in the next
block field of block 0, “3” for block 1, and so on.

5.3. Creation of Enclave from Enclave Cache

When an invoked eapp is in the cache (cache hit), the
SM creates an enclave memory image from the cached
information. Once the cache hit happens by checking the
enclave cache key in the metadata cache, the SM copies



Enclave 
Memory Image 
Cache Region

・・・empty filledempty empty

block0 block1 block2 block3

Enclave
memory image

・・・

copy copy copy ・・・

Metadata for Enclave Memory Image Cache Blocks
Block0

metadata
Block1

metadata
Invalid
→valid

Next block
1

・・・
Next block

3

Invalid
→valid

Each 4 KiB block of the
enclave memory image is 
copied to the allocated 
enclave memory image 
cache blocks.

The metadata 
of each enclave 
memory image 
cache block is
set along with
the memory
image copy.

Figure 7. Data flow of enclave cache creation. The created enclave’s
memory image is divided into 4KiB blocks and copied into the allocated
blocks of the memory image cache. The associated metadata for each
memory image cache block is also configured.

the memory images of the eapp, RT, and the loader to the
created enclave region from the enclave memory image
cache blocks by traversing the next block indexes in the
associated blocks’ metadata. Next, the SM creates the
enclave metadata and copies the hash value from the
enclave cache metadata to the created metadata. Then,
the loader starts the RT and the eapp, like the normal
execution.

6. Security Analysis

This section first describes the threat model. We follow
the same threat model of RISC-V Keystone for our en-
clave cache. Then, we argue that the proposed cache can
protect its contents from unauthorized external memory
access, just as the original Keystone can.

6.1. Threat Model of RISC-V Keystone

RISC-V assumes four classes of attackers: a physical
attacker, a software attacker, a side-channel attacker, and
a denial-of-service attacker [6]. The most critical attacker
class in our proposal is the software attacker, which can
control the software behavior of host applications and the
untrusted OS on the victim host. It can also modify the
unprotected memory regions. Since the proposed enclave
cache is in memory space, we must confirm that it is
protected from unauthorized memory access. More on this
in the next subsection.

The proposed cache can also offer the same security
strength as the original Keystone for other attacker classes.
Side-channel attacks with off-chip components are out of
the scope of this paper, as is Keystone. If we need a higher
security strength, we can combine existing protection
mechanisms, such as introducing an isolated scratch pad
memory for the enclave cache location to prevent side-
channel attacks.

6.2. Protection Against Malicious Memory Access

RISC-V keystone assumes that software attackers can-
not access memory regions protected by PMP [6]. Since a

software attacker only has U-mode and S-mode privileges,
protection by PMP prevents memory access and tamper-
ing. The SM calculates the hash value for the created
enclave at cache miss time, and its memory image is stored
in the cache. Since both are appropriately protected by
PMP, the attacker cannot tamper with the cached applica-
tion after the hash value calculation. Also, the metadata
area of the enclave cache is managed by the SM and is
protected by PMP, so the attacker cannot tamper with the
metadata to alter hash values and addresses. Therefore,
the same security strength as the original Keystone is
maintained even when the enclave cache is introduced.

7. Experimental Evaluation

This section reports the performance evaluation result
of the proposed enclave cache on RISC-V Keystone. The
evaluation environment is the same as in Section 4, using
Hifive Unmatched, and the average value of 10 measure-
ments is taken. We first evaluate the primitive performance
of the proposed enclave cache, then we use the digital
signature server program used in Section 4 for an end-to-
end performance evaluation.

7.1. Evaluation of Primitive Performance

We evaluate two items: The first evaluation is the
speedup at the enclave cache hit compared to the one
without the cache (normal startup). The second evaluation
is the overhead of the enclave cache implementation, com-
paring the enclave cache miss to the normal startup. Since
we assume the number of cached applications is small
(at most ten), we do not evaluate the application look-up
overhead. Note that we ensure the platform’s hardware
cache is cleared before the measurement to compare it
with the case without an enclave cache.

Fig.8 and Fig. 9 depict the evaluation results. For both
graphs, the horizontal and the vertical axes show the eapp
file size and the enclave startup time, respectively.

Fig. 8 depicts the comparison result of the enclave
startup time between the normal startup (dotted line) and
the enclave cache hit (solid line). It shows that the en-
clave cache hit achieves approximately 28.5–55.5× faster
startup time than the normal.

Similarly, Fig. 9 depicts the comparison result of the
enclave startup time between the normal startup (dotted
line) and the enclave cache miss (solid line). It shows
that the startup time with the enclave cache miss is ap-
proximately 1.03× larger than normal. This confirms that
the overhead introduced by the proposed enclave cache is
negligible.

When the size of the eapp file changed from 1.6 KiB to
2.0 KiB, the speedup on cache hits decreased from about
55.5× to 31.9×. This is because the Keystone device
driver allocates the memory for an enclave in pages of
powers of 2, and the allocated memory size is changed
between these two file sizes. The overhead caused by
this memory allocation does not appear to be significantly
different when an enclave is normally started since it is
relatively smaller than the hash value calculation. How-
ever, for the proposed enclave cache, the impact of the
memory allocation on the entire system becomes large due



0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

En
cl

av
e 

St
ar

tu
p 

Ti
m

e 
[m

s]

Enclave Binary Size [KB]

Original Keystone Enclave Cache Hit

Figure 8. Enclave start-up time comparison between normal start-up and
cache hit.

0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

En
cl

av
e 

St
ar

tu
p 

Ti
m

e 
[m

s]

Enclave Binary Size [KiB]

Original Keystone Enclave Cache Miss

Figure 9. Comparison of Enclave start-up time between normal start-up
and cache miss.

to bypassing the hash calculation, resulting in a relatively
shorter startup time.

7.2. Evaluation on Digital Signature Program

We evaluate the proposed enclave cache with the
digital signature server program used in Section 4. Fig. 10
depicts the evaluation result. The horizontal axis shows
the input message size, and the vertical axis shows the
speedup of the response time at the cache-hit time com-
pared to that on the original Keystone. We varied the
server’s binary size.

The evaluation shows that the proposed cache ob-
tains a 6–40× speedup. Though the longer message re-
quires more calculation and startup time becomes rel-
atively short, the 100 KiB message size case can still
obtain a speedup of about 6–8×. The proposed cache
can contribute to reducing the response time of the server
application.

7.3. Discussion: Comparison with Shadow En-
clave

We also implement another type of enclave cache,
which creates a special enclave holding the memory
image of a cached enclave: at the cache-hit time, the
SM creates an enclave instance from the special enclave

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 20 40 60 80 100 120

Re
po

ns
e 

tim
e 

sp
ee

du
p

at
 e

nc
la

ve
 c

ah
ce

 h
it

Message Size [KiB]

1.22

1.31

1.61

2.08

Eapp Binary Size [MiB]

Figure 10. Speedup of server response time at enclave-hit against the
original Keystone.

holding the cached enclave’s memory image. This imple-
mentation mimics the eapp startup overhead for Penglai’s
Shadow Enclave [3] in the Keystone environment. Note
that Penglai introduces page-based memory protection
(Guarded Page Table) by a hardware extension. Unlike
Penglai, we must use one PMP entry to protect a special
enclave in the Keystone environment.

We compare the startup time of the proposed enclave
cache with this special enclave-based cache implemen-
tation. The evaluation shows the latter one has approxi-
mately 10–15 [ms] shorter startup time than the proposed
cache, depending on the binary file size. They are about
60–74% of the startup time for the proposed cache. This
is because the proposed cache must gather the memory
image from multiple memory image cache blocks to create
the enclave instance, while the latter just copies an entire
memory image from the special enclave. On the other
hand, the latter implementation requires one PMP entry
for each special enclave, while the proposed cache uses
only one PMP entry for the memory image cache, which
can hold multiple eapps’ memory images. The proposed
approach can realize an efficient enclave cache mechanism
on an ordinary RISC-V platform by consuming only one
additional PMP entry.

8. Conclusion

This paper proposes an enclave cache mechanism to
accelerate the startup of an enclave on RISC-V Keystone.
We first investigated the overhead of response time for a
server application and revealed that the hash calculation
for the enclave measurement process can account for more
than 85% of the response time. The proposed enclave
cache can reduce startup time by bypassing the hash
value calculation in the measurement process if the system
executes it once and the cache keeps its information.
The evaluation result has shown the proposed enclave
cache obtained 6–40× speedup compared to the original
Keystone implementation. We have also shown that the
overhead introduced by the cache is only 3% by com-
paring the startup time at the cache miss to the normal
one.

Acknowledgement

A part of this paper is supported by JSPS KAKENHI
Grant Number JP23K11040.



References

[1] AMD. AMD SEV-SNP: Strengthening VM isolation with
integrity protection and more. https://www.amd.com/content/
dam/amd/en/documents/epyc-business-docs/white-papers/
SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.
pdf, January 2020.

[2] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR
Cryptol. ePrint Arch., 2016:86, 2016.

[3] Feng Erhu, Lu Xu, Du Dong, Yang Bicheng, Jiang Xueqiang, Xia
Yubin, Zang Binyu, and Chen Haibo. Scalable Memory Protection
in the {PENGLAI} Enclave. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21), pages
275–294, 2021.

[4] Intel. White paper: Intel trust domain extensions. https://cdrdv2.
intel.com/v1/dl/getContent/690419, February 2023.

[5] Dayeol Lee, Kevin Cheang, Alexander Thomas, Catherine Lu,
Pranav Gaddamadugu, Anjo Vahldiek-Oberwagner, Mona Vij,
Dawn Song, Sanjit A. Seshia, and Krste Asanovic. Cerberus: A
formal approach to secure and efficient enclave memory sharing. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’22, page 1871–1885, New
York, NY, USA, 2022. Association for Computing Machinery.

[6] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović,
and Dawn Song. Keystone: an open framework for architecting
trusted execution environments. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[7] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential serverless
made efficient with plug-in enclaves. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA),
pages 306–318, 2021.

[8] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. Design and verification of the
arm confidential compute architecture. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22),
pages 465–484, Carlsbad, CA, July 2022. USENIX Association.

[9] Linaro [n. d.]. Open portable trusted execution environment ([n.
d.]). https://www.op-tee.org/.

[10] SiFive [n. d.]. HiFive Unmatched Datasheet ([n. d.]). https://sifive.
cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-4b1521546543
hifive-unmatched-datasheet.pdf.

[11] Stéphane Peter [n. d.]. makeself - make self-extractable archives
on unix ([n. d.]). https://makeself.io/.

[12] Arttu Paju, Muhammad Owais Javed, Juha Nurmi, Juha Savimäki,
Brian McGillion, and Billy Bob Brumley. Sok: A systematic review
of tee usage for developing trusted applications. In Proceedings of
the 18th International Conference on Availability, Reliability and
Security, ARES ’23, New York, NY, USA, 2023. Association for
Computing Machinery.

[13] Ravi Sahita, Vedvyas Shanbhogue, Andrew Bresticker, Atul Khare,
Atish Patra, Samuel Ortiz, Dylan Reid, and Rajnesh Kanwal. Cove:
Towards confidential computing on risc-v platforms. In Proceed-
ings of the 20th ACM International Conference on Computing
Frontiers, CF ’23, page 315–321, New York, NY, USA, 2023.
Association for Computing Machinery.

[14] Hoang Trong-Thuc, Duran Ckristian, Nguyen-Hoang Duc-Thinh,
Le Duc-Hung, Tsukamoto Akira, Suzaki Kuniyasu, and Pham
Cong-Kha. Quick Boot of Trusted Execution Environment with
Hardware Accelerators. IEEE Access, 8:74015–74023, 2020.

[15] Andrew Waterman, Krste Asanović, and SiFive Inc. The RISC-V
Instruction Set Manual, Volume II: Privileged Architecture. https:
//riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf.

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://www.op-tee.org/
https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-4b1521546543_hifive-unmatched-datasheet.pdf
https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-4b1521546543_hifive-unmatched-datasheet.pdf
https://sifive.cdn.prismic.io/sifive/d0556df9-55c6-47a8-b0f2-4b1521546543_hifive-unmatched-datasheet.pdf
https://makeself.io/
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf

	Introduction
	Related Works
	RISC-V Keystone
	RISC-V Privilege Levels
	Keystone Architecture
	Physical Memory Protection (PMP)
	Components of Keystone Enclave Application File
	Enclave Startup Process

	Preliminarly Evaluation: Enclave Startup Overhead
	Evaluation Environment
	Evaluation Program
	Evaluatoin Result

	Proposed Enclave Cache Design
	Enclave Cache Structure
	Caching Eapp
	Creation of Enclave from Enclave Cache

	Security Analysis
	Threat Model of RISC-V Keystone
	Protection Against Malicious Memory Access

	Experimental Evaluation
	Evaluation of Primitive Performance
	Evaluation on Digital Signature Program
	Discussion: Comparison with Shadow Enclave

	Conclusion
	References

