

Narrowing the Gap between TEEs Threat Model and Deployment Strategies

Filip Rezabek frezabek@net.in.tum.de

Jonathan Passerat-Palmbach Moe Mahhouk Frieder Erdmann Andrew Miller

Narrowing the Gap between TEEs Threat Model and Deployment Strategies

Filip Rezabek^{1,2}, Jonathan Passerat-Palmbach^{1,3}, Moe Mahhouk¹, Frieder Erdmann¹, and Andrew Miller¹

¹Flashbots ²Department of Informatics, Technical University of Munich, Germany ³Imperial College London

Motivation Setting

Motivation Setting

Sophisticated hardware layer attacks are possible

SysTEX'25 | Narrowing the Gap between TEEs Threat Model and Deployment Strategies

Motivation Setting

Problematic, especially in malicious setting of blockchain (Maximal Extractable Value, ...)

- Compromising a **TEE**, could lead to large financial losses
- Not limited to blockchains AI model&data, ...

SysTEX'25 | Narrowing the Gap between TEEs Threat Model and Deployment Strategies

Motivation Problem Definition

Trust assumptions are now on the host/operator being honest, to ensure physical security

However, current **TEE attestation flows** do not provide guarantees they operate in a given infrastructure

→ Provide assurance that CVM runs in the respective (trusted) infrastructure

How do we extend the attestation flow so the CVM runs on the respective infrastructure?

Background Deployments

Two deployments:

1. Bare/CVM flow

SysTEX'25 | Narrowing the Gap between TEEs Threat Model and Deployment Strategies

Background Deployments

Two deployments:

- 1. Bare/CVM flow
- 2. Paravirtualization flow
 - Virtual Trust Level (VTL) for Intel or Virtual Machine Protection Level (VMPL) for AMD
 - Direction towards open source OpenHCL and COCONUT

Background Intel TDX

Intel TDX relies on two Intel SGX enclaves as a part of its attestation flow

- PCE (Provisioning Certificate Enclave)
- TDQE (Trust Domain Quoting Enclave)

In collaboration with Intel, receive an attestation key

As a part of the flow, provide PPID \rightarrow unique identifier of the platform

Design Use PPID?

We can rely on **PPID**

- Is part of the attestation flow
- Unique per platform
- Fixed for the platform

Design Use PPID?

We can rely on **PPID**

- Is part of the attestation flow
- Unique per platform
- Fixed for the platform

What about the **binding** to the infrastructure provider?

Design Use PPID?

We can rely on **PPID**

- Is part of the attestation flow
- Unique per platform
- **Fixed** for the platform

What about the **binding** to the infrastructure provider?

- **Provider** can create a database storing the values
- Verifier can query the database and receive True/False as an output

Design Use PPID – Challenges

Introduces some limitations:

- **Relies** on provider to share those information
 - Might vary across **cloud** providers
 - Extension to many parties, otherwise hard to integrate
- Limited visibility for the case of different CVMs on the same node
- Other **TEE** implementations
- Bare metal deployments?

Extension to Bare Metal Future directions

Two scenarios:

- 1. Confidential Virtual Machine (CVM) in cloud
- 2. Bare metal in cloud

Extension to Bare Metal Future directions

Two scenarios:

- 1. Confidential Virtual Machine (CVM) in cloud
- 2. Bare metal in cloud

Summary Overview

Identification of the gap between attestation and threat model

Suggestion to strengthen it using **PPID** (or similar for AMD)

Poses several challenges

Future work should expand on the bare metal and less involvement of the provider

Summary Overview

Identification of the gap between attestation and threat model

Suggestion to strengthen it using **PPID** (or similar for AMD)

Poses several challenges

Future work should expand on the bare metal and less involvement of the provider

Thank you!

frezabek@net.in.tum.de