
Why I Stopped Caring 
About the TCB

Adrien Ghosn

Azure Research

Marios Kogias

Imperial College London



TEEs and the Provided Guarantees

• Hardware-level support for:
• Confidentiality (C)

• Integrity (I)

• against external attackers
ΤΕΕ

Hypervisor/OS

Read (C)Write (I)X X

(C)
(I)

How can we guarantee confidentiality and integrity against internal attackers?



TCB: A blast from the past

• Intel SGXv1 was among the first commercially 
available TEEs

• Used to isolate parts of an application

• Single address space

• The TCB by definition included everything that runs 
inside the TEE

• A low TCB was the only way to reason that SGX does 
not leak information
• Auditing

• Full formal verification



Towards cVMs and Usable CC

• Confidential VMs are becoming the de facto standard

• Different offerings by hardware vendors

• Practicality:
• Run existing large codebases inside the TEE
• Easier and more practical to deploy confidential applications

• More isolation features:
• Traditional isolation mechanisms: protection rings and page tables
• New isolation mechanisms: e.g., VMPLs in AMD 

TDX CCASEV-SNP

How should we think about the TCB in this new TEE world?



Positions

• TCB does not include all the code that runs inside a TEE
 Stop caring about the TCB size or using it as a metric for security

• Internal integrity protection is not a TEE-specific requirement
 Use existing compartmentalization mechanisms to tackle it

• Focus on confidentiality
 Need a systematic way to ensure a TEE does not leak data



High-Level Idea

• Avoid reasoning about what the code inside the TEE can do
• Small TCB requirement for auditing, formal verification... (old approach)

• Actively enforce what the TEE should not do 

• Focus on the TEE interfaces 
• Enumerate all the communication channels

• Eliminate those that are not necessary

• Control those that cannot be avoided

ΤΕΕ

Hypervisor/OS

ΤΕΕ ΤΕΕ

Hypervisor/OS

X X



A Note on the Confinement Problem

• This is not a new idea/problem

• Published by Butler Lampson in 1973

• Introduced a set of “confinement rules”
• Masking: A program to be confined must 

allow its caller to determine all its inputs 
into legitimate and covert channels.

Can we turn all confidentiality problems into 

confinement problems?

How can the confinement rules be applied in 

modern TEE architectures?

Can we turn all confidentiality problems into 

confinement problems? YES



Example: Confidential ML

• Interesting tripartite trust relationship

Model 

Provider

Infrastructure 

Provider

Data 

Owner

X X

X

• Model privacy

• Model verifiability and 

attestability

Data confidentiality

Network 

ΤΕΕ

Hypervisor/OS

Model 

ΤΕΕ

Encrypted

Model
Encrypted

Prompt/Response

The size of this TEE does not 

matter since it can only 

communicate with another TEE

What is in the TCB in this scenario?



Designs for Securing Interfaces

• Trusted Intermediary • Trusted Channels

Trusted Intermediary

Model
Network

Comm

Hypervisor/OS/Devices

Model
Network 

Comm

Hypervisor/OS/Devices

Network 

Driver

Model
Network 

Comm

Trusted 

NIC

TDISP

The architecture and the TCB changes based on the hardware capabilities



What is the minimum hardware support?

• A form of physical isolation
• Page tables

• VMPLs

• Other piece of hardware (e.g. separate NIC)

• At least two privilege levels:
• To dynamically check interactions as a trusted intermediary

• To statically configure the trusted channels



Conclusion

• The TCB does not include everything that runs inside the TEE

• Confidentiality can be seen as a confinement problem

• Proposal: Focus and secure the TEE interfaces
• Open challenge how to secure existing interfaces

• Open challenge how to design good interfaces for non-trusted parties

• TEE hardware is becoming more elaborate
• Let’s use it to build better and more usable CC applications

Thank you!
m.kogias@imperial.ac.uk

https://marioskogias.github.io

mailto:m.kogias@imperial.ac.uk
https://marioskogias.github.io/

	Slide 1: Why I Stopped Caring About the TCB
	Slide 2: TEEs and the Provided Guarantees
	Slide 3: TCB: A blast from the past
	Slide 4: Towards cVMs and Usable CC
	Slide 5: Positions
	Slide 6: High-Level Idea
	Slide 7: A Note on the Confinement Problem
	Slide 8: Example: Confidential ML
	Slide 9: Designs for Securing Interfaces
	Slide 10: What is the minimum hardware support?
	Slide 11: Conclusion

