Why | Stopped Caring
About the TCB

Adrien Ghosn Marios Kogias
Azure Research Imperial College London

=" Microsoft IMPERIAL

TEESs and the Provided Guarantees

« Hardware-level support for:
 Confidentiality (C) @@ —
* Integrity (I)
 against external attackers

JRR SR O
(
\

Hypervisor/OS

How can we guarantee confidentiality and integrity against internal attackers?

TCB: A blast from the past

* Intel SGXv1 was among the first commercially
available TEEs

« Used to isolate parts of an application
 Single address space

 The TCB by definition included everything that runs
inside the TEE

* Alow TCB was the only way to reason that SGX does
not leak information

 Auditing
* Full formal verification

SGX

Towards cVMs and Usable CC

« Confidential VMs are becoming the de facto standard
* Different offerings by hardware vendors

(nte) AMDQ1 Ar

TDX SEV-SNP CCA

* Practicality:
* Run existing large codebases inside the TEE
« Easier and more practical to deploy confidential applications

* More isolation features:

 Traditional isolation mechanisms: protection rings and page tables
* New isolation mechanisms: e.g., VMPLs in AMD

How should we think about the TCB in this new TEE world?

Positions

 TCB does not include all the code that runs inside a TEE
> Stop caring about the TCB size or using it as a metric for security

* Internal integrity protection is not a TEE-specific requirement
P Use existing compartmentalization mechanisms to tackle it

* Focus on confidentiality
P Need a systematic way to ensure a TEE does not leak data

High-Level ldea

* Avoid reasoning about what the code inside the TEE can do
« Small TCB requirement for auditing, formal verification... (old approach)

* Actively enforce what the TEE should not do

* Focus on the TEE interfaces
 Enumerate all the communication channels
* Eliminate those that are not necessary
» Control those that cannot be avoided

TEE TEE

Hypervisor/OS Hypervisor/OS

A Note on the Confinement Problem

* This is not a new idea/problem
* Published by Butler Lampson in 1973

* Introduced a set of “confinement rules’

* Masking: A program to be confined must
allow its caller to determine all its inputs
into legitimate and covert channels.

Can we turn all confidentiality problems into
confinement problems? YES

How can the confinement rules be applied in
modern TEE architectures?

Operating C. Weissman
Systems Editor

A Note onthe
Confinement Problem

Butler W. Lampson
Xerox Palo Alto Research Center

This note explores the problem of confining a
program during its execution so that it cannot transmit
information to any other program except its caller. A
set of examples attempts to stake out the boundaries of
the problem. Necessary conditions for a solution are
stated and informally justified,

Key Words and Phrases: protection, confinement,
proprietary program, privacy, security, leakage of data

CR Categories: 2.11, 4.30

Introduction

Designers of protection systems are usually pre-
occupied with the need to safeguard data from un-
authorized access or modification, or programs from
unauthorized execution. It is known how to solve these
problems well enough so that a program can create
a controlled environment within which another, pos-
sibly untrustworthy program, can be run safely [1, 2].
Adopting terminology appropriate for our particular
case, we will call the first program a customer and the
second a service.

The customer will want to ensure that the service
cannot access (i.e. read or modify) any of his data
except those items to which he explicitly grants access.
If he is cautious, he will only grant access to items which
are needed as input or output for the service program.
In general it is also necessary to provide for smooth
transfers of control, and to handle error conditions.
Furthermore, the service must be protected from
intrusion by the customer, since the service may be a

Copyright © 1973, for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author’s address: Xerox Palo Alto Research Center, 3180 Porter
Drive, Palo Alto, CA 94304,

613

proprietary program or may have its own private data.
These things, while interesting, will not concern us here.

Even when all unauthorized access has been pre-
vented, there remain two ways in which the customer
may be injured by the service: (1) it may not perform
as advertised; or (2) it may leak, i.e. transmit to its
owner the input data which the customer gives it.
The former problem does not seem to have any general
technical solution short of program certification. It does,
however, have the property that the dissatisfied cus-
tomer is left with evidence, in the form of incorrect
outputs from the service, which he can use to support
his claim for restitution. If, on the other hand, the
service leaks data which the customer regards as con-
fidential, there will generally be no indication that the
security of the data has been compromised

There is, however, some hope for technical safe-
guards which will prevent such leakages. We will call
the problem of constraining a service in this way the
confinement problem. The purpose of this note is to
characterize the problem more precisely and to de-
scribe methods for blocking some of the subtle paths
by which data can escape from confinement.

The Problem

We want to be able to confine an arbitrary program.
This does not mean that any program which works
when free will still work under confinement, but that
any program, if confined, will be unable to leak data. A
misbehaving program may well be trapped as a result
of an attempt to escape.

A list of possible leaks may help to create some
intuition in preparation for a more abstract description
of confinement rules.

0. If the service has memory, it can collect data, wait
for its owner to call it, and then return the data to him.
I. The service may write into a permanent file in its
owner’s directory. The owner can then come around at
his leisure and collect the data.

2. The service may create a temporary file (in itsell a
legitimate action which cannot be forbidden without
imposing an unreasonable constraint on the computing
which a service can do) and grant its owner access to
this file. If he tests for its existence at suitable intervals,
he can read out the data before the service completes
its work and the file is destroyed.

3. The service may send a message to a process con-
trolled by its owner, using the system’s interprocess
communication facility.
4. More subtly, the information may be encoded in the
bill rendered for the service, since its owner must get a
copy. If the form of bills is suitably restricted, the
amount of information which can be transmitted in this
way can be reduced to a few bits or tens of bits. Re-
ducing it to zero, however, requires more far-reaching
measures.

Communications October 1973
of Volume 16
the ACM Number 10

Example: Confidential ML

The size of this TEE does not
matter since it can only
communicate with another TEE

* Interesting tripartite trust relationship

* Model privacy
* Model verifiability and /
attestability

47

,[Model } Model |t w
~__Provider). TEE TEE

What is in the TCB in this scenario?

Provider Owner

‘4
[Infrastructure}< ________ oo { Data

Model
: . Encrypted
Data confidentiality o Prompt/Response

Designs for Securing Interfaces

 Trusted Intermediary Trusted Channels
Model Network Model -Network Model -Network
C?mm Comm Comm
—— i
Trusted Intermediary Network
Driver TSP
v
Hypervisor/OS/Devices Hypervisor/OS/Devices
Trusted
NIC

The architecture and the TCB changes based on the hardware capabillities

What is the minimum hardware support?

* A form of physical isolation

* Page tables
 VMPLs
» Other piece of hardware (e.g. separate NIC)

* At least two privilege levels:
* To dynamically check interactions as a trusted intermediary
* To statically configure the trusted channels

Conclusion

* The TCB does not include everything that runs inside the TEE
« Confidentiality can be seen as a confinement problem

* Proposal: Focus and secure the TEE interfaces

« Open challenge how to secure existing interfaces
* Open challenge how to design good interfaces for non-trusted parties

 TEE hardware is becoming more elaborate
 Let’s use it to build better and more usable CC applications

Thank you!

m.kogias@imperial.ac.uk
https://marioskogias.github.io

mailto:m.kogias@imperial.ac.uk
https://marioskogias.github.io/

	Slide 1: Why I Stopped Caring About the TCB
	Slide 2: TEEs and the Provided Guarantees
	Slide 3: TCB: A blast from the past
	Slide 4: Towards cVMs and Usable CC
	Slide 5: Positions
	Slide 6: High-Level Idea
	Slide 7: A Note on the Confinement Problem
	Slide 8: Example: Confidential ML
	Slide 9: Designs for Securing Interfaces
	Slide 10: What is the minimum hardware support?
	Slide 11: Conclusion

