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Introduction

e Bringing ML inference service to the Edge can improve user’s privacy

e Models and training data sets are high values targets

e Attackers can exploit large attack surface of Edge devices to obtain information about the model
and its training dataset

e Without strong protections, model providers are not willing to deploy their models on the Edge
devices REE
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Model Protection

What are the available primitives to protect the model?

Using model in the encrypted mode Using model with hardware-enforced protections
Multi-party computation or homomorphic encryption TEESs (acceptable overhead)
High Overhead Acceptable Overhead



Exploring TEE solutions

e Limitation of current TEEs on Edge devices:
1) Memory Size
2) Library support
3) GPU limitation

4) Sometimes inaccessible for third-party apps
e Even running small models can be challenging within the current TEE solutions



Model Spliting

e Splitting techniques can overcome some of the TEE limits, however as shown in [1] such

solutions remain vulnerable to privacy-stealing attacks

e Public parts of the model can be used to:

a.Recover the private part REE TEE

b.Recover the training dataset . . Malioion: ] [ App ] App l TApp
Adversary's information EApp
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about the model 1s 8
limited
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[Harder to reconstruct the model] [
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or the training data set

Conclusion: Running the entire model inside the TEE is desirable



Arm CCA

e New extension of Armv9-A architecture

e Interesting features which makes it suitable for our use-case:
a. Targeting Edge devices
b.Flexible memory allocation
c. VM-level support



Realm world Normal world Secure world
e Introduces Realm world | | |
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Framework Overview

e We developed a basic framework for on-device model deployment with CCA

e Used Fixed Virtual Platform (FVP) to emulate the architecture and report the cost of our framework

e Performed membership inference attack against the framework — Showing the privacy benefit of our
scheme



System Model

e Three engaged parties

Model provider Client Trusted verifier
Realm
VM
— J

| Realm Image
RMM Hypervisor
a Attestation Report
] @ Model

@ Updated Model

[ Secure Monitor




Adversary Model

e NW is compromised | Untrusted |
e CCA software is trusted Model provider Trusted verifier
e Realm image is trusted . .
Realm @
VM
——

Realm Image
RMM Hypervisor
\ / a Attestation Report

] & Model

@ Updated Model

[ Secure Monitor




Framework Overview

Model Deployment pipeline
1.Obtaining realm image

Model provider
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Framework Overview

Model Deployment pipeline
1.0btaining realm image
2.Creating and activating a realm
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Framework Overview

Model Deployment pipeline
1.Obtaining realm image
2.Creating and activating a realm
3.Establishing TLS connection
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Framework Overview

Client Trusted verifier

Model Deployment pipeline
1.Obtaining realm image
2.Creating and activating a realm
3.Establishing TLS connection

4.Realm attestation
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Framework Overview

Model Deployment pipeline
1.Obtaining realm image
2.Creating and activating a realm
3.Establishing TLS connection
4.Realm attestation
5.0btaining model from provider
6. Announcing model readiness to

normal world
7.Running inference

Model provider Client

@ ®

Shared

[ Hypervisor

A

[ Secure Monitor

Trusted verifier

B o

Realm Image

a Attestation Report

@ Model

@ Updated Model

10



Framework Overview

Model Deployment pipeline
1.Obtaining realm image
2.Creating and activating a realm
3.Establishing TLS connection
4.Realm attestation
5.0btaining model from provider
6. Announcing model readiness to

normal world
7.Running inference
8.performing model updates
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Framework Evaluation

e Running the same inference service
Model provider Client

Trusted verifier

in two settings:
o Model within Realm VM (3) TLS

o Model within a NW-VM @ &
— o
(baseline) <_@,@
e Running model within NW exposes . @ NING

it to the adversary. [ Hypervisor ]

e The adversary use model A

B o

Realm Image

a Attestation Report
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information to perform a [ Secure Monitor ]

@ Updated Model

membership inference attack

11



Experimental Setup

e Different applications: image classification, voice recognition, and chat assistants
e CCA allows easy integration of relatively big models like GPT2

Model Model Size (MB) VM size (MB)
AlexNet 9 300
MobileNet_v1 1.0 224 16 400
ResNetl8 44 450
Inception_v3_2016_08_28 95 1750
VGG 261 3650
GPT2 177 900
GPT2-large 898 1800
TinyLlama-1.1B-Chat-v0.5 1169 2000




Inference Overhead

e Compare running our framework against the baseline

e Only report number of instructions not latency!!!

e CCA can achieve an overhead of, at most, 22%

Model Init Ovh

Read Input Ovh

Inference Ovh

Write Output Ovh

Total Ovh

16%—41%

449%—100%

17%—-22%

31%—-133%

17%-22%
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Privacy Evaluation

e Repeat White-box and black-box attack for different models and datasets
e Our framework can successfully protect the model against membership inference attack by 8.3%
reduction in the adversary’s success rate.
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Conclusion and Summary

e We measure both the overhead and the privacy gains of running models of various sizes and

functionalities within a realm VM.
e We provide the first indication of CCA suitability as a mechanism to provide model protection.

(00 README g =

<[> SysTEX'25 Artifact Evaluated [Available § </> SysTEX'25 Artifact Evaluated Functional
<[> SysTEX'25 Artifact Evaluated ' Reusable

Build & Evaluate Arm CCA

This repository aims to provide a comprehensive, user-friendly platform for
building and simulating Arm Confidential Compute Architecture (CCA) software
stack. Instructions for building all necessary components, along with
customization options, are provided. To emulate the CCA-supported hardware,
we use (Fixed Virtual Platform), a free platform provided by Arm. We also use
https://github.com/comet-cc/CCA-Evaluation Shrinkwrap to build the boot firmware of FVP. We merge Arm tracing tools with
our setup to measure number of instructions executed by FVP's core during the
execution of target workloads. This repository has been only tested on a x86
host with Ubuntu 22.04.
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