
OpenCCA: An Open Framework to
Enable Research on Arm CCA

Andrin Bertschi, Shweta Shinde
ETH Zurich

andrin.bertschi@inf.ethz.ch
4. July 2025

Confidential Computing is Exciting!

Industry Momentum

● Widely available in Hardware

● Deployed in the cloud

Research Momentum

400 501 767
1250

2380

3960

5580

6800

2010 2014 2018 2022

Google Scholar Results on "Trusted Execution"

Arm CCA
19 academic papers in last 4 years

CCA SEV-SNP TDX Keystone

How to research on Arm CCA

Arm CCA
19 academic papers in last 4 years

Main Challenge on Arm CCA:
● No Hardware yet

A + B = C
C * 2 = D

2 Operation

Benchmark

● Validate design +
compatibility

● 17/19 papers

Arm FVP
QEMU

1. Simulation

But how long?

How to research on Arm CCA

Arm CCA
19 academic papers in last 4 years

Main Challenge on Arm CCA:
● No Hardware yet

A + B = C
C * 2 = D

5 cycles
metric of time

Benchmark

● Validate design +
compatibility

● 17/19 papers

Arm FVP
QEMU

1. Simulation

Custom
Ad-Hoc
Armv8

2. Board Prototype

● Validate performance
● 15/19 papers

Includes microarchitectural effects of complex hardware: out-of-order exec,
pipeline stalls, cache misses, …

How to research on Arm CCA

Custom
Ad-Hoc
Armv8

Arm CCA
19 academic papers in last 4 years

How to research on Arm CCA

Arm Juno R2
● 10 years old
● No longer manufactured
● Initial Price: 10k USD

https://developer.arm.com/-/media/Arm%20Developer%20
Community/PDF/Juno%20r2%20datasheet.pdf

Arm CCA
19 academic papers in last 4 years

How to research on Arm CCA

Undisclosed

Arm CCA
19 academic papers in last 4 years

How to research on Arm CCA

Variety of different boards,
all with different hardware
features

Arm CCA
19 academic papers in last 4 years

The Need for Open Framework for
Performance Evaluation

Software Simulation:
 Functionality
 Compatibility

Custom Ad-Hoc:
Difficult to compare
Difficult to reproduce
Repeated engineering

Arm FVP
QEMU

Custom
Ad-Hoc
Armv8

OpenCCA:
An Open Framework to Enable Research on
Arm CCA

Minimal changes to CCA reference
stack → Preserve functionality

No security guarantees
Only for benchmarking & accelerator support

Target: Affordable & Available Armv8
Boards

Focus on reusable Framework
Not specific to a board
Performance estimation

OpenCCA Design Goals

Validate design

Step 1: Simulation

Arm FVP
QEMU

Evaluate & Compare
Performance

Step 2: Hardware Prototype

OpenCCA
Framework

Background on Arm CCA

● Before Armv9: TrustZone

Secure worldNormal world

Platform
Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

Background on Arm CCA

Secure worldNormal world

Platform
Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Root
world

DRAM Realm VM
Memory

CPU1

Realm
VM

CPU2

Attacker

Memory Filter (GPC)

Trusted
Hypervisor

Realm
VM

Secure worldNormal world

Platform
Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted
Hypervisor

Realm
VM

Root
world

Secure worldNormal world

Platform
Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Armv9 Armv8

Secure worldNormal world

Platform
Services

VM

Hypervisor

VM

Armv9 Hardware with FEAT_RME

Trusted Firmware

Realm world

Trusted
Hypervisor

Realm
VM

Root
world

Secure worldNormal world

Platform
Services

VM

Hypervisor

VM

Armv8 Hardware

Trusted Firmware

How do you even run Arm CCA on older Hardware?

Trusted
Hypervisor

Realm
VM

Realm World
emulated

Root world
emulated

Emulate CCA in software within the constraints of Armv8 Hardware

● Tradeoff between Compatibility &
Overhead

● Fake missing parts in software while
keeping changes small

● Return predefined values instead of
querying the hardware

Example: Emulating Hardware in Software

Hardware Debugger
valuable

CPU

Undefined Hardware
Feature

Stall or Instant Reset
GPCCR_ EL3
GPTBR_EL3

Fake AFSRx_EL3
Return fixed
configuration

Memory Filter (GPC) Registers:

Memory Layout in Trusted Hypervisor
● Paging implicitly uses FEAT_TTST (Armv8.4)
● Decrease lower limit on size of VA region

○ Fewer page walks needed (L3 -> Page)
● Not available on our hardware!

Example: Short Translation Tables (TTST)

TTBR1

TTBR0Low VA Region

High VA Region
0xFFFF-FFFF-FFFF-FFFF

0x0000-0000-0000-0000
Uninitialized data (.bss)

Data (.data)

RW (.rw)

RO (.ro)

RMM Code (.text)

Invalid Area

Shared across CPUs
static (mostly flat)

mappings

Per CPU mappings

• Stack
• Exception Stack
• Slots for dynamic

Mappings

High VA region only
2MB large!

Workaround:
● Increase High VA region to 1GB
● Longer page table walk (L2 -> L3 -> Page)

● Run general purpose realm VMs
● Enlighten 2 firmware components
● Keeping rest of reference stack unmodified

Software changes:
● Trusted Hypervisor (RMM): +1440 LoC
● Trusted Firmware (TF-A): + 940 LoC

Secure worldNormal world

OpenCCA on Armv8 Hardware

Trusted Firmware (TF-A)

Trusted
Hypervisor

Realm
VM …

Hypervisor

Details: Implementation

Changes (C/C++/Asm) < +1% LoC

Preserve functionality without security

Selection Criteria

Choosing a Hardware Platform

Exploring Hardware Boards
for OpenCCA

Documentation
Technical Reference Manual

Support for Firmware
Arm Trusted Firmware

No Vendor lock
Firmware flashable

Modern Hardware
Features

Also relevant

Price &
Availability

RK3588 SoC as a Platform

Key Specs:
● Armv8.2 Architecture
● CPU: 4x Cortex-A76 + 4x Cortex A55
● GPU: Arm Mali G610
● Up to 32 GB RAM
● I/O: PCIe 3.0, USB, HDMI

https://radxa.com/products/rock5/5b/

Radxa Rock5b RK3588
~ 250 USD

RK3588 Rock5b Board:
 Not vendor locked
 Well documented
 Affordable & Available
 Support System

OpenCCA on RK3588

● OpenCCA “Box” with support for hardware debugging,
firmware flashing and power management

Suitable Workloads on RK3588 and
Porting Work to other boards

RK3588

Armv8.2
4x Cortex A-76
4x Cortex A-55

Mobile+Edge
Workloads Not vendor locked

 Documentation
 Affordable & Available

Cloud
Workloads?

Faster bring-up on
newer Hardware
• Subset of our changes

needed
• Initial bulk engineering

done by OpenCCA

What about OpenCCA once we have CCA Hardware?

OpenCCA bridges Gap between Specification and Hardware for
Performance Estimation

Arm CCA
Specification update

Update in
Simulation

Update In
Hardware

fast

slow

Example Case: Arm CCA Planes
• Alpha spec released, likely not

in first iteration of hardware

Estimate in Software with
OpenCCA to experiment with
Feature

How we evaluate Designs with OpenCCA

Validate design

Step 1:
Simulation

Arm FVP
QEMU

New research design

Step 3:
Benchmark design

OpenCCA
Framework

Unmodified OpenCCA stack

Step 2:
Benchmark Baseline

For
Comparison

Step 4:
Analyze Results

Example Benchmark Campaign with Case Study

● Demonstrate OpenCCA adaptability and
ease of integration with Case Studies

● 2 Memory Filter Case Study
○ Filter1: System Default
○ Filter2: Mark memory as Normal world

CPU

DRAM

Filter1

Root No Access

Filter2

Realm
VM

RealmNormal Normal

● Changes: ~2300 LoC added, 4 person hours

Checkout paper & code

Devices

Current Status
● Run confidential VMs with Arm reference

stack
○ TF-A: v2.11
○ RMM: v0.5.0
○ Linux 6.12 (cca/full-v5+v7)
○ Kvmtool (cca/v3)

● Initial version Open Source

Next Steps:
● Update to latest version of reference stack
● Software Bring Up for RK3588

Current Status & Next Steps

https://opencca.github.io

● Comparison of live demo of OpenCCA
with pre-recorded software simulation

● Run realm VM with compute heavy task
to visualize performance benefits

Live Demo

● Paper and source code is online
● Get in touch!

OpenCCA:
● Open Framework for Performance Estimations
● Enable CCA on commodity Armv8 hardware

for performance and accelerators support

Thank You

X: andrinbertschi

email: andrin.bertschi@inf.ethz.ch

web: https://opencca.github.io

