Enclave Application Cache for RISC-V Keystone

Takumu Umezawa, Akihiro Saiki, Keiji Kimura (graduated) Waseda University, Japan

SysTEX'25

TEE, Enclave, and Startup Overhead

- Computer systems deal with secret information
- Widely spreading demands for Trusted Execution Environment (TEE)
 - Smartphones
 - ► IoT, Edge devices
 - Cloud

Enclave Type (Intel SGX, ARM OP-TEE, RISC-V Keystone)

Secure VM Type (AMD SEV, Intel TDX, ARM CCA, RISC-V CoVE)

- Need to ensure the trustworthiness of applications/VMs and an execution platform.
 - Measurement of application/VM Binary Image at the startup time
 - ► Hash calculation ➡ Expensive Startup Cost

Enclave Application Cache

Penglai's Shadow Enclave dealt with a similar target.

Our Target: RISC-V Keystone

- Open Source, Enclave type TEE
- Utilizing RISC-V PMP (Physical Memory Protection) for memory isolation
 - Setting physical address information to be isolated in PMP registers

Keystone Eapp Startup Process

Preliminary Evaluation (Startup Overhead) Evaluation Environment: HiFive Unmatched

Core	U74 (1.2GHz)	S7 (1.2GHz)
# of Cores	4	1
L1I-Cache	32KiB	16KiB
L1D-Cache	32KiB	N/A
L2-Cache	2MiB	
Main Memory	DDR4 16GiB	
Storage	Samsung SSD 970 EVO Plus 250GB (MZ-V7S250BW)	
Evaluation Program	Digital Signature Server Program using ED25519 and SHA3-512	

SysTEX'25

July 4, 2025

Preliminary Evaluation (Startup Overhead) Result

> 85% of execution time is spent on Eapp startup.

July 4, 2025

SysTEX'25

Caching Eapp (Cache miss): Metadata Setting after Enclave Creation

Launching Enclave from Cache (Cache Hit)

- Inverting the caching process.
- Creating the eapp memory image from the memory image cache blocks.
- Setting the eapp metadata from the cached metadata in SM.

SysTEX'25

July 4, 2025

10

Security Analysis

Ensuring the same security level as Keystone

- Protecting Memory Regions by PMP
 - Enclave Memory Image Cache Region
 - Cache Metadata in SM
- Cache Management Processes in SM
 - Caching Process, including measurement
 - Launching Eapp from Cache

Experimental Evaluation

Evaluation Platform

HiFive Unmatched (also used for the preliminary evaluation)

Primitive Performance

- Eapp launching speedup by Enclave Cache
- Cache-miss Overhead introduced by Enclave Cache
- Evaluation on Digital Signature Program

July 4, 2025

SysTEX'25

Primitive Performance

Digital Signature Eapp Performance

Comparison with Penglai's Shadow Enclave

- Shadow Enclave: Launching Enclave before execution
 - User explicitly creates it.
- Comparison with another type of cache mimicking Shadow Enclave.
 - Caching an Eapp in a dedicated Enclave.
 - Consuming one PMP entry for one Eapp cache.
- Shadow Enclave type cache obtains 10-15 [ms] shorter startup time at Cache Hit.
 - Our Enclave Cache creates the memory image by traversing Enclave Memory Image Cache Blocks.
- Our cache needs no hardware extension.
- Only consuming one PMP entry.

SysTEX'25

July 4, 2025

15

Conclusion

- Enclave Application Cache for RISC-V Keystone
- Caching Eapp binary images in the protected memory regions.
 - ► To reduce the expensive Eapp launching cost.
- Performance evaluation:
 - > 28.5-55.5x faster startup time at Cache hit.
 - ▶ 6-40x speedup for a digital signature program.

