

Lessons from a Decade of Confidential Computing

Shweta Shinde, ETH Zurich

Secure & Trustworthy Systems Group

https://sectrs.ethz.ch/

Example: LLM Chatbot

Attack surfaces for confidential data

Trusted Execution Environments: Versatile Principle Applied to Real Systems

An incomplete history of the Evolution of Trusted Computing

An incomplete history of the Evolution of TEEs

Past Trusted Execution Environments

Present Trusted Execution Environments

New Generation CPUs (e.g., AMD SEV-SNP, Intel TDX, Arm CCA)

New Generation GPUs (e.g., NVIDIA CC)

A Decade of Confidential Computing

- 2015: Intel rolled out SGX, Azure coined the term Confidential Computing
- 2019: Confidential Computing Consortium (CCC) was formed
- 2023: NVIDIA Confidential mode for H100

Google Scholar Results on "Trusted Execution"

From Concept to Adoption

For Smartphones

POSTED ON APRIL 29, 2025 TO SECURITY & PRIVACY

Building Private Processing for AI tools on WhatsApp

Oppo Q ≡ Newsroom All Press Release Stories Intellectual Property

How OPPO and Google Are Redefining Mobile Al with Seamless Integration and Enhanced Security

Stories · Mar 04, 2025

For Al

A\

Confidential Inference

Systems

Design principles and security risks

Version 1.0, June 2025

AZURE CONFIDENTIAL COMPUTING BLOG 14 MIN READ

Azure AI Confidential Inferencing: Technical **Deep-Dive**

May 3, 2024 Security

Reimagining secure infrastructure for advanced Al

OpenAI calls for an evolution in infrastructure security to protect advanced AI

Why did confidential computing take off?

Cloud Computing: Adoption → Security Risks

Key Growth Period when cloud became commercially viable

- 2006: AWS launched EC2
- 2008–2010: Google, Microsoft, IBM expanded cloud offerings

Widespread Adoption

 2010s – Present: Cloud became essential for modern businesses Cloud-native applications, serverless computing, edge computing, AI Increased focus on security and compliance

Intel SGX kick-started a revolution

But... SGX was not designed

to protect existing applications	 Library OSes and SDKs Implementation bugs in the TCB Iago attacks through untrusted interfaces
to protect against side-channels	 2015: Controlled-Channel Attacks 2017: Meltdown, Spectre, and an era of speculative side- channels
for cloud workloads	 Limited to 92MB of physical RAM

Virtual Machines: A cloud-native abstraction

Shift from Enclaves to Confidential VMs

New Abstractions

Beyond the CPU

Isolate VMs instead of processes

- Easy to lift-and-shift workloads
- Cloud-native abstraction
- Performance

Expand the isolation to devices

- (Custom) accelerators are vital
- Allocated at VM granularity

- Performance

Confidential VMs are Built for Lift-and-Shift

• Offered by AMD SEV-SNP, Intel TDX, Arm CCA, RISC-V CoVE

Confidential VMs: CPU & Memory Abstraction

Memory		
View:	CVM	Hypervisor

But... did CVMs solve what Enclaves couldn't?

Beyond CPU-based Protection

Adding TEE support to Accelerators

Nvidia's Confidential Computing on Hopper GPUs

Graviton: TEEs on GPUs

Confidential Machine Learning within Graphcore IPUs

Ascend-CC: CC on Heterogeneous NPU for Emerging Generative AI Workloads

And many more academic works...

Securely Composing CPU & Accelerator TEEs

Infrastructure is Optimized by the Cloud Provider CPU **Fast interconnects:** CXL, RDMA, etc. **CPU** memory Acc. memory

Optimizations: kernel bypass, copy-on-write, interrupt delivery

Untrusted Cloud Provider and Hardware

Fast interconnects : CXL, RDMA, etc.

Optimizations: kernel bypass, copy-on-write, interrupt delivery

Cloud Provider

Confidential Computing Blocks Memory Accesses

Fast interconnects : CXL, RDMA, etc.

Optimizations: kernel bypass, copy-on-write, interrupt delivery

Cloud Provider

31

What About the Software and Optimizations?

Balancing the Trifecta

What was trusted before, isn't anymore

Lift-and-Shift Can Be Dangerous

Where do we go from here?

Welcome to Confidential Computing Summit

The Premier Al Infrastructure Event

1. Modular, minimal, and verified designs: Scale better and easier to analyze

2. Protect every interface, verify every assumption

3. Formal guarantees are achievable, but rare

4. Confidential Computing is a force for user empowerment

5. Be willing to build for the future, not just patch the present

6. Build big systems as research vessels, not quick publications

7. Extract lessons, not features

8. Papers that educate, backed by systems that encountered real challenges and validated aspiration

- Confidential computing is a reincarnation of trusted execution environments
- Decades of research and development are coming to fruition
- Right place right time for AI revolution
- Need to proceed with caution and research the nuances

